
Web Economics: Group 09 Report

Devin Kuokka
Affiliate Student, Computer
Science, University College

London
devin.kuokka.16@ucl.ac.uk

Stylianos Rousoglou
Affiliate Student, Computer
Science, University College

London
stylianos.rousoglou.16

@ucl.ac.uk

Michael Whitman
Affiliate Student, Computer
Science, University College

London
zcabwhi@ucl.ac.uk

1. INTRODUCTION
Real-Time Bidding (RTB) is an increasingly popular ap-

proach to online advertising that has evolved into a multi-
billion dollar industry. An efficient approach to quickly and
accurately optimizing an advertiser’s bidding strategy in ad
auctions is paramount to the success of the advertising party,
as a good solution can save vast amounts of money and lead
to higher conversion rates than competitors.

The challenge in automating ad auctions and bidding in
real-time is the necessity to predict, with the highest pos-
sible accuracy, the likelihood that the ads displayed to a
particular user will actually be of interest to them. Using
those predictions, hereby referred to as pCTR (or predicted
Click-Through Rate), a strategy can be developed to opti-
mize the number of won impressions (which the advertiser
pays for) that have the potential of becoming conversions.
Naturally, the accuracy and sensitivity of the pCTR values
in central in developing a successful bidding strategy.

Given real-life ad impression data, a machine learning ap-
proach is often preferred in tackling this problem. First, a
large data set with training data is used to build and op-
timize some type of machine learning classifier. After the
machine learning model is trained, it is used to make pre-
dictions about data in a test data set, for which user feed-
back is not provided, thus attempting to predict unknown
users’ behavior. The success of the classifier is evaluated by
different metrics that reflect its accuracy in anticipating an
unknown user’s responsiveness to an ad.

Therefore, in attempting to predict user behavior, a thor-
ough and educated study and use of the training data is
required for accurate and useful results. Our individual re-
ports present some data analytics that result from a basic
exploration of the training data set provided for the assign-
ment.

In this paper, different approaches to automating the gen-
eration of bid prices will be undertaken, and each will be
evaluated using common evaluation metrics and compara-
tively to others. First, two naive strategies with little opti-
misation will be implemented, and the results will be pre-
sented and discussed. Subsequently, two machine learning
approaches will be presented, one using a linear model and
one using a non-linear one. Our approach and steps in build-
ing our machine learning classifier and developing a bidding
strategy will be detailed. The techniques employed through-
out our group strategies will be discussed, and different de-
sign decisions made will be defended. Finally, the results of
our best strategy will be presented and commented on using
relevant evaluation metrics.

2. RELATED WORK
The extensive literature review we performed covers a

range of academic papers and articles. The first academic
paper, Real-time bidding benchmarking with ipinyou dataset,
was used as a model for both the presentation of the data
and the preliminary statistical analysis performed on the
dataset, both to be found in our individual reports. The sec-
ond relevant publication, A logistic Regression Approach to
Ad Click Prediction, provided valuable insights into building
a logistic regression classifier, which is the machine learning
model used in our group solution, as well as into techniques
for data pre-processing, data clensing and data reduction.
Other related work submitted in the past 5 years to KDD
(Knowledge Discovery and Data Mining), a community pro-
ducing scientific work in data mining and data analysis, was
also reviewed for additional observations and expertise.

3. DATASET
The dataset consists of three data files, namely the train-

ing, validation, and test files. Machine learning classifiers
are first trained using the training data set, train.csv. Sub-
sequently, the validation.csv file is used to evaluate the per-
formance of different classifiers and suggest which algorithm
is more accurate in its predictions. While the aforemen-
tioned files include user feedback information about each ad
impression, which is necessary for supervised learning as it
is used to train, optimize and evaluate the classifier (in the
case of RTB, user feedback refers to whether the ad was
clicked or not, i.e. a binary variable), the third file, test.csv,
is only used for testing the developed model, and thus does
not contain the click data field. Auction pricing information
is also not included in the testing dataset, as the solution is
required to optimize bidding prices and come up with the
best possible strategy to win as many likely-to-be-clicked
impression auctions as possible, thus maximizing the con-
version rate of ad impressions.

3.1 Data format
The dataset includes thousands of impressions, one per

line, in comma-separated csv files, with detailed information
about the advertiser, the advertising context, the spatial and
temporal context, and the user, for each impression. The
format of the data varies across fields, with integers, strings,
as well as special words and symbols used. In instances
where data is missing, the word null is used. Fields such
as weekday and hour have been mapped to integers, while
others, such as useragent, have been left as string. It is clear
that some data manipulation has to be performed prior to



t

Figure 1: Constant bid vs. Placed bids

the data beind used for training a classification model.
Note that, although the dataset uses the currency RMB

and units of Fen x 1000 in all figures pertaining to money,
all monetary results in this report (such as cost, effective
CPC, etc.) have been adjusted to units of Fen.

4. APPROACH & EVALUATION
There were several non-trivial approaches our group ex-

perimented with, including linear and non-linear solutions.
Below, the constant and random bidding strategies are first
discussed, and then a linear and a non-linear approach are
presented.

Python was used for developing the main functionality
of all the solutions and learning algorithms, as well as for
common helper code used for loading the data, storing the
output in a convenient format, and displaying a summary
of the results in the terminal. The scikit-learn 1 Python li-
brary was used for the actual logistic regression functional-
ity. Other Python libraries, such as pandas2, a data analysis
software library, and numpy3, a scientific computing soft-
ware package, were also utilized to facilitate data analysis
and manipulation.

4.1 Basic Strategies

4.1.1 Constant Bid
The first strategy was a rather simple one; the solution

had to bid the same constant value in every auction. Given
the budget constraint of 25, 000, the task can be treated as
an optimization problem with the following limiting cases:
the algorithm’s bids are too high, which results to all auc-
tions being won and the budget rapidly running out; or the
algorithm’s bids are too low, which results to too few auc-
tions being won and the budget not being spent.

Clearly, the optimal solution lies somewhere in between
the two limiting cases. This approach would in theory help
us win more bids than choosing a constant bid by chance,
and assuming that impressions that will be clicked are uni-
formly distributed in the dataset, it also increases the ex-
pected CTR, since the budget will all be spent, but not
immediately and on consecutive bids. To optimize our con-
stant bid value, we repeated the evaluation process for every

1http://scikit-learn.org
2http://pandas.pydata.org/
3http://www.numpy.org/

t

Figure 2: Constant bid vs. Wins

t

Figure 3: Constant bid vs. Clicks

t

Figure 4: Constant bid vs. CTR



Figure 5: Constant bid vs. CPM

Figure 6: Constant bid vs. CPC

constant bid value in the range [10, 20, ..., 400]. We then
plotted that range of possible values against several evalua-
tion metrics, with the results presented in figures 1-6.

Figures 1 and 2 show the constant bid value plotted against
the bids placed and the bids won by the solution respectively.
The results are perfectly consistent with the notion that a
high constant bid value places less bids and wins less auc-
tions that a lower one. As such, when the solution stops
bidding in all auctions (i.e. runs out of money before run-
ning out of impressions), both graphs are asymptotically
decreasing.

Figure 3 plots the bid value against the number of clicked
impressions. The peak of absolute clicks is observed around
a constant bid value of 110, with 130 clicks. The rate at
which clicks grow as a function of the bid before that global
maximum is much higher than the rate of descent thereafter,
because slight increases in the bidding price before the max-
imum can encapsulate many more won impressions, whereas
after the peak, they just decrease the number of total auc-
tions, but not necessarily ones that lead to conversions.

Figure 4 plots the CTR against the constant bid price. Al-
though the absolute number of clicks is decreasing after the
global maximum, the CTR has an increasing trend through-
out. This can be attributed to the fact the the clicks curve
is descending linearly (in approximation), whereas the wins
plot is descending in a higher rate.

Figures 5 and 6 plot the CPM and CPC against the con-
stant bid respectively. The average cost per million impres-
sions expectedly increases since higher constant bids implies

Figure 7: Upper bound vs. Placed bids

more expensive auctions being won, and thus more money
being spent per million impressions. The average cost per
click is initially increasing, before remaining relatively sta-
ble for the rest of the test range. This can be explained
since as the constant bid increases, so does the number of
clicks, but the number of won impressions decreases as a re-
sult of more expensive auctions being won. Assuming the
clicks are evenly distributed in the dataset, the CPC should
indeed not vary much.

Whereas the CTR is increasing throughout the range, the
average cost per million impressions is also increasing, which
means that the optimal approach using the constant bid
strategy is not necessarily the approach that yields the high-
est CTR, but rather a trade off between the cost and effi-
ciency. Consequently, the CPC may be a better metric to
rely upon, since a local minimum in the CPC plot maximizes
the efficiency of money in terms of conversions achieved.
For instance, a good pick for the constant bid would be the
value 230. The corresponding CTR value is 0.085%, which
is among the highest percentages in the plot, and the CPC
is at a local minimum of 86, 200 per click. Clearly, this solu-
tion is not efficient financially, and hopefully the CPC value
will drop drastically in latter solutions.

A constant bid value of 110 yielded the maximum number
of clicks, specifically 130 clicks. The CTR for the particular
bid was 0.057%. If optimizing for CTR, on the other hand,
a constant bid of 390 yielded 0.094% conversions, which was
the highest percentage observed, but a much lower absolute
number of clicks, specifically 58. This is due to the fact
that such a high constant bid value wins significantly less
auctions, so clicked impressions represent an overall higher
percentage of impressions won.

4.1.2 Random Bid
The second simple strategy we explored introduced ran-

domness in the strategy’s bidding choices by basing the bid
prices on chance. Our approach in exploring a range of pos-
sible upper bounds was the following: after calculating the
mean impression pay price from the training dataset, we cre-
ated a range of values by adding fractions of the standard
deviation to the mean. To make our results more reliable,
we ran the evaluation process on validation.csv five times for
each value in the explored upper bound range. The vertical
axes then plot the average values obtained from five distinct
trials with each given upper bound.

To enforce the upper bounds, we used a Python function



Figure 8: Upper bound vs. Wins

Figure 9: Upper bound vs. Clicks

Figure 10: Upper bound vs. CTR

Figure 11: Upper bound vs. CPM

Figure 12: Upper bound vs. CPC



to generate pseudo-random numbers in the range [0, 1], and
then multiplied them by our upper bounds, thus getting a
series of pseudo-randomly generated real values in the range
[0, UpperBound].

Figures 7 and 8 show the number of placed bids and wins
respectively, as a function of the upper bound fed into our
pseudo-random number generator. As expected, increasing
the upper bound of the random bids leads to a decrease
in the expected average number of bids placed. Roughly
around the value 200, the solution starts exhausting the bud-
get by buying more expensive auctions, thus the descending
trend in figure 7. At the same value, figure 8 peaks and then
start decreasing for the same reason.

Figure 9, which plots the upper bound against the number
of clicked impressions, reveals why a random-based approach
to solving the problem is bound to not perform reliably well.
Although repeating the experiment infinite times would give
expected values that follow a consistent trend, even five rep-
etitions lead to (average) values with some variance from an
approximate curve like the one observed in figure 3.

Figures 10, 11, 12 look similar to figures 4, 5 and 6 re-
spectively, as the expected results from repeated trials in
the random bid solution should closely resemble the results
of the constant bid approach, always with some variance
due to the degree of randomness involved in the particular
bidding approach.

An upper bound value of 200 yielded the maximum num-
ber of clicks, specifically 109 clicks. The CTR for the par-
ticular upper bound was 0.060%. If optimizing for CTR,
on the other hand, a high upper bound value of 400 again
yielded the highest CTR percentage, specifically 0.079% con-
versions, which was the highest percentage observed, but a
much lower absolute number of clicks, specifically 84. Again,
higher expected bids lead to significantly less auctions won,
so clicked impressions represent an overall higher percentage
of impressions won in the case of the high upper bound.

4.2 Machine Learning Strategies
Several regression and classification machine learning al-

gorithms were considered by our team. The problem lends
itself well for supervised learning; the training dataset does
contain auction results as well as user feedback, and the
goal is to build a classifier that produce a CTR estimate
for any given impression. Our initial instinct was to use
Linear Regression, a quite familiar and conceptually simple
approach. Linear Regression uses the general linear function
y = a0 +

∑
aixi, where the dependent variable y is contin-

uous, as is usually the case for the independent variables xi
as well. It is tempting to use the linear model result as a
probability, but there is a fundamental problem with that:
the output of the linear model can be less than 0 or greater
than 1, rendering the output meaningless.

To solve this problem, Logistic Regression was introduced,
with a mathematical model that actually restricts the depen-
dent variable value in the range [0, 1]. In reality, the model
is estimating the probability of a categorical outcome, i.e.
the likelihood of one discrete output result versus another.
The general Logistic Regression formula for two outcomes
(0 or 1) can be written as

P (Y = 1) =
1

1 + e−(a0 +
∑
aixi)

Though the independent variables may either be continuous

or discrete, the result of the model is a probability of the
dependent output taking the given discrete value.4

However, the Logistic regression is not the approach that
we ended up using. We chose to use a Random Forest Classi-
fier as our learning method.5 This basically uses a group of
decision trees to make its decision, and we found that given
the rather unpredictive nature of the data, and the number
of categorical features, that this was a model best suited to
our pCTR prediction problem.

Before training the machine learning classifiers to make
CTR predictions, there was a significant amount of work to
be done in order to prepare the data for ”learning”. First,
a high-level analysis (presented in detail in our individual
reports) was useful in deciding on the good data features to
be used for classification, i.e. the ones that do correlate with
differences in the Click-Through Rate. Accordingly, several
data fields that either had unique or highly differentiated
values, such as the bidid and the userid, would not have
been useful for classification and thus had to be removed.
Therefore, some data selection was performed to remove
those fields, as well as IP (unique to each user), logtype (1
in this dataset), domain, url, urlid, creative, keypage, etc.

Given the large volume of data with negative user feed-
back (click = 0) and the scarcity of impressions that led to
conversions (click = 1), undersampling was also used to
increase the ratio of clicked to non-clicked impressions in the
training data. The small bias towards clicked impressions in
training helped correct the bias in the original dataset, where
only 0.077% of all impressions were clicked. The method of
undersampling that we implemented allows us to set a ratio
of number of number of nonclicks to number of clicks in our
training dataset.

Subsequently, the data was transformed using a technique
known as one-hot encoding. One-hot encoding creates a vec-
tor for every possible string value any feature can possibly
take, transforming the feature-value mappings chosen for
learning into sparse matrices, One-hot encoding transforms
complex feature-value mappings into simple (though very
large) matrices with only binary digits, a conversion which is
very helpful for mathematical computations as well as more
convenient for machine learning classification algorithms.

Next, we take some fields that are in the data and modify
them such that they will be more useful features. We take
weekday and hour, and replace these with binary features
which indicate whether or not the impression occurs during
a peak time. We split useragent into two fields, for both
operating system and browser used. Using the operating
system information, we determine whether or not a mobile
device is being used and add that as a feature.

After this last step, the classifier is ready to be trained.
The selected feature vectors are passed into the scikit-learn
library, and a model is built to produce CTR predictions.
It’s worth noting that the option ’class weight’ is set to such
that clicks are weighted more highly in the classification pro-
cess than nonclicks, to an amount that we tune depending
on the strategy we are implementing.

After learning is completed, the validation dataset is loaded
and some data manipulation is performed, as described above.
Subsequently, the model is used to calculate CTR predic-
tions for every impression in the validation dataset and store

4https://www.quora.com/What-is-logistic-regression
5https://en.wikipedia.org/wiki/Random forest



them in an in-memory array. The real-time bidding simula-
tion can then be performed, and its results evaluated.

4.2.1 Linear Bidding Strategy
In this linear bidding strategy, the bidding price for a given

impression is proportional to its predicted CTR. Specifically,
the formula can be written as bid = C ∗ (pCTR/avgCTR),
where C is a constant that we’ll refer to as the base bid. Con-
ceptually, the base bid would be the bid price for an impres-
sion with average CTR, i.e. for which the ratio pCTR/avgCTR
is 1. For impressions with higher-than-average predicted
CTR, the ratio would be over 1 and the base bid would be
proportionally higher than the value of the base bid.

Employing the machine learning strategy discussed in Sec-
tion 4.2, with a non-click:click ratio of 10:1, only one param-
eter required tuning: base bid. Our goal was to optimize the
linear bidding strategy over both the number of clicks and
the CTR; focusing on both measures prevents the strategy
from simply bidding on everything to maximize the num-
ber of clicks, as this will reduce our CTR. Figures 13 and
14 show the relationship between base bid and clicks, and
base bid and CTR, respectively. Figures 13 and 14 reveal
that a base bid between 25 and 75 optimizes both clicks and
CTR. Narrowing our base bid to this range, we found that
the optimal base bid is 41 (Figures 15 and 16).

The results for this base bid are provided below:

Table 1: Linear Strategy Results
Statistic Value

Click-Through Rate 0.00121
Conversions 108

Spend 4,856.51
Average CPM 54.63
Average CPC 44.97

Figure 13: Base Bid vs. Clicks

4.2.2 Non-linear Bidding Strategy
The process that we used in our non-linear strategy for

learning pCTRs can be found in our machine learning strate-
gies section. The strategy equation that we used was the
ORTB1 strategy6, which uses the following equation:√

cθ

λ
+ c2 − c (1)

6http://wnzhang.net/papers/ortb-kdd.pdf

Figure 14: Base Bid vs. CTR

Figure 15: Base Bid vs. Wins — Narrowed Range

Figure 16: Base Bid vs. CTR— Narrowed Range

where λ is the Lagrangian multiplier, c is a constant, and θ
is the input pCTR value. Through trial and error, the best
values for the tunable variables determined by our configu-
ration were λ = 5 ∗ 10−6 and c = 200. We use 30 times as
many nonclicks as clicks in our undersampling process, and
weight clicks 20 times as much in our learning process. The
results and evaluation metrics are detailed in Table 2.

The strategy that we used could have achieved more clicks
if desired, but we chose to optimise mainly for click-through



Table 2: Non-linear Strategy Results
Statistic Value

Click-Through Rate 0.001140
Conversions 189

Spend 13647
Average CPM 82.292757
Average CPC 72.210370

rate. We only used about half of our budget, and managed
to keep average CPM and CPC fairly low in the process.

5. CONCLUSION
Real-time bidding strategies for online auctions are dy-

namic solutions, relying heavily on both a strong machine
learning algorithm, as well as a bidding strategy that is re-
flective of the data. Even with incredibly imbalanced data
and anonymized attributes, which limited the amount of
feature manipulation possible, utilizing the correct machine
learning algorithm was essential to the performance (mea-
sured by both number of clicks and CTR) of our final strat-
egy. By using a Forest Classifier rather than a Logisitc Re-
gression Classifier, we were able to create a larger discrep-
ancy between click and non-click CTR’s improving. Pair-
ing the improved pCTR prediction with a non-linear model,
which was more reflective of the right-skewed payprice dis-
tribution of bids than constant, random, or linear, we were
able to dramatically increase the number of bids won at the
lower end of the price spectrum. The combination of these
changes enabled us to increase the number of clicks by 81,
while only reducing our CTR by 0.00007.

Having explored multiple classification algorithms, next
steps would be to improve our undersampling method. While
random undersampling is a strong starting place, there is a
sizable amount of research into alternative data sampling
methods. Most intriguing based upon our class imbalance
problem is SMOTE, which generates artificial minority-class
data based upon the relevant feature space of the minority
class. Thus, SMOTE is able to increase the total amount
of training data available, improving the model, even for
real-world situations where data imbalance is inevitable.

5.1 Github
The relevant code that we used in making our strategy

and evaluated in this report can be found at the following
link: https://github.com/mibewh/Compm041Project

6. REFERENCES
[1] Xuehua Shen, Jun Wang, Shuai Yuan, and Weinan

Zhang. Real-time bidding benchmarking with ipinyou
dataset. arXiv preprint arXiv:1407.7073, 2014.

[2] Gouthami Kondakindi, Vinit Parakh, Sai Kaushik
Ponnekanti, Aswin Rajkumar, and Satakshi Rana. A
Logistic Regression Approach to Ad Click Prediction.
Mach Learn Class Project, 2014.

[3] Cheng Li, Yue Lu, Qiaozhu Mei, Dong Wang, and
Sandeep Pandey. Click-through Prediction for
Advertising in Twitter Timeline. University of
Michigan, KDD 2015 Sydney.

[4] H. Brendan McMahan, Gary Holt, D. Sculley, Michael
Young, Dietmar Ebner, Julian Grady, Lan Nie, Todd

Phillips, Eugene Davydov, Daniel Golovin, Sharat
Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar
Hrafnkelsson, Tom Boulos, and Jeremy Kubica. Ad
Click Prediction: a View from the Trenches. Google,
Inc. KDD 2013 Chicago.

[5] W. Zhang, S. Yuan, and J. Wang. Optimal
real-timebidding for display advertising. Real-time
bidding benchmarking with ipinyou, 2014.

https://github.com/mibewh/Compm041Project

	Introduction
	Related Work
	Dataset
	Data format

	Approach & Evaluation
	Basic Strategies
	Constant Bid
	Random Bid

	Machine Learning Strategies
	Linear Bidding Strategy
	Non-linear Bidding Strategy


	Conclusion
	Github

	References

