
Information Retrieval and Data Mining: Group 09 Report

Swakeert Jain

MSc WSBDA

swakeert.jain.16@ucl.ac.uk

Stylianos Rousoglou

Affiliate Student, Computer

Science, University College

London

stylianos.rousoglou.16

@ucl.ac.uk

Gurpreet Singh

MSc WSBDA

gurpreet.singh.16@ucl.ac.uk

Tiegsti Solomon

MSc WSBDA

ucabths@ucl.ac.uk

ABSTRACT
Learning to rank for Information Retrieval (IR) is a task
to automatically construct a ranking model using training
data, such that the model can sort new objects according to
their degrees of relevance, preference, or importance. There
are a huge number of IR problems that by nature are ranking
problems, and can therefore be enhanced using Learning-to-
rank techniques. In this paper, the three of the best algo-
rithms for LTR are implemented and their performance com-
pared by various metrics to determine each’s performance
against the others. Analyses is performed on each of the
approaches and advantages and disadvantages are discussed
for each of the algorithms. A machine learning approach to
learning to rank trains a model to optimize a target eval-
uation measure with respect to training data. The paper
is concerned with learning to rank, which is to construct a
model or a function for ranking objects. Learning to rank
is useful for document retrieval, collaborative filtering, and
many other applications. To assess these techniques, we
work with the MSRDataset, provided by Microsoft.

Keywords
Ground Truth (GT), Ranking Function (RF), Ideal Dis-
counted Cumulative Gain (IDCG), Normalised Discounted
Cumulative Gain (NDCG), Discounted Cumulative Gain (DCG),
Mean Average Precision (MAP)

1. INTRODUCTION
The internet has grown extremely rapidly in size over the

past few decades. The amount of indexed web pages has
crossed 50 billion 1 today and even more unknown and un-
listed websites are present outside the documented internet.
Out of these billions of pages, there are several thousand sets
of websites that provide the same or similar kind of informa-
tion to the user. For example, if we think about checking the
news or sports scores, we can name 5 to 10 websites o↵ the
top of our heads that provide this information. To find any
other information or gain any knowledge from the web, we
need to have a mechanism to tell us which website to look
at for a kind of information. This is where search engines
come in.

A search engine is a software application that crawls the
internet and indexes the data that it comes across. Then,
when a user wishes to search for something, they will feed
their query into the search engine and it will return a list of

1http://www.worldwidewebsize.com

pages that contain that information. A search engine’s core
functions can be separated into two broad parts; Crawling
and Ranking. The first part deals with gathering and storing
all the data and metadata about all the pages that it comes
across and the second part deals with how to Rank them or
in which order to display them in terms of relevance when a
user types in a query. This can, together, be referred to as
Information Retrieval.

Ranking is a major task that requires a lot of development
and is something that might never be perfected. The basic
concept being that one web page might be more relevant
to one user as compared to another one. Therefore, today
major search engines are not only considering the content of
the website when returning the results, but are also consider-
ing the user’s personal data to better understand what kind
of pages they are more likely to visit and thereby generate
results unique to the user. Initially ranking involved dis-
playing web pages which contain the queried keyword most
number of times, and similar linear approaches like docu-
ment length and inverse document frequency. This led to
the search results becoming full of spam as content creators
would flood their pages with keywords to attract visitors.

The search engines were then enhanced such that they
also took into consideration the reputation of the website,
in which it measures the page rank by considering in-links
and out-links for the page, checking frequency of search term
in anchor texts and metadata, URL properties, relevant im-
ages, etc. The reputation factor was further enhanced by
taking into consideration how well the websites that link
into and out of this page rank. This resulted in all the web-
sites paying more attention towards maintaining its page
rank and therefore improving the quality of content on the
internet as a whole. It is said that major search engines
like Google and Bing now take more than 200 factors into
consideration while ranking the pages.

Ranking is the central problem in Information Retrieval.
Many Information Retrieval problems are by nature ranking
problems, such as document retrieval, collaborative filter-
ing, key term extraction, definition finding, important email
routing, sentiment analysis, product rating, and anti-web
spam. In this paper, we will mainly discuss document re-
trieval. It is to be noted that document retrieval is not a
narrow task. Web pages, academic papers, books, emails,
and news articles are just a few examples of documents. To
tackle the problem of document retrieval, many heuristic
ranking models have been proposed and used in IR litera-
ture. Recently, given the amount of potential training data
available, it has become possible to leverage Machine Learn-

Name: Stylianos Rousoglou
Department: Computer Science



ing technologies to build e↵ective ranking models. Specif-
ically, we call those methods that learn how to combine
predefined features for ranking by means of discriminative
learning-to-rank methods.

Learning to rank, when applied to document retrieval, is
a task as follows. Assume that there is a collection of docu-
ments. In retrieval (i.e., ranking), given a query, the ranking
function assigns a score to each document, and ranks the
documents in descending order of the scores. The ranking
order represents the relevance of documents with respect to
the query. In learning, a number of queries are provided;
each query is associated with a perfect ranking list of docu-
ments; a ranking function is then created using the training
data, such that the model can precisely predict the ranking
lists in the training data. In recent years, learning to rank
has become a very hot research direction in IR, and a large
number of learning-to-rank algorithms have been proposed,
out of which we discuss and compare three in our paper.

There are a lot of datasets available to implement, test
and improve ranking upon. The six2 most common ones
are: LETOR 3.0 - Gov; LETOR 3.0 - Ohsumed; LETOR
4.0; Yandex; Yahoo!; Microsoft. Out of these, the Yahoo!
dataset contains the most number of queries, exceeding Mi-
crosoft by approximately 5k, however it is the Microsoft
dataset that has the most number of docs, exceeding ev-
ery other by atleast 2,900k containing 3,771k overall. Mi-
crosoft dataset also stands behind both Yahoo! and Yandex
in terms of number of features with Yahoo! having an out-
standing 700 features. Both the Yahoo! and Microsoft one’s
were published in 2010, while others are from 2008 and 09.
In all the datasets, the data consists of three types, namely,
query, document and grade, where the query and document
features are combined. Here, the grade indicated the degree
of relevance to the document to its corresponding query.
These are labelled by human editors.

For our implementation, we choose the Microsoft dataset3

mainly because it has already been partitioned into five
di↵erent datasets with almost the same number of queries
which provides us the possibility of a fivefold cross valida-
tion which leaves a very small scope for overfitting, which is
a very common occurrence in any Machine Learning model.
In each fold, we use three parts for training, one part for
validation, and the remaining part for test. The validation
set is used to tune the hyper parameters of the learning algo-
rithms while the test set is used to evaluate the performance
of the learned ranking models. The metrics of the dataset
are further discussed in the dataset statistics section of this
paper.

2. RELATED WORK
The extensive literature review performed covers a range

of academic publications and articles. The scientific papers
studied present and evaluate di↵erent learning to rank algo-
rithms, and propose a variety of evaluation metrics that can
be used to optimize and assess learning.

Generally, given a large volume of training data, machine
learning problems are concerned with producing a model
with good enough predictive capabilities on an instance-to-
instance basis to consistently estimate, as closely and pre-

2https://moodle.ucl.ac.uk/mod/resource/view.php?id=2776065,
slide 7
3https://www.microsoft.com/en-us/research/project/mslr

cisely as possible, the value of some unknown variable in
real-life scenarios. Unlike traditional machine learning prob-
lems, the nature of Learning to Rank places emphasis on the
model’s capability to evaluate query-document instances in

relation to one another. In other words, in the case of learn-
ing to rank, the relative scoring of di↵erent instances by our
predictor model is more important than the absolute rele-
vance score attributed to any given instance. For example,
in the case of search engine ranking, a typical application
for learning to rank algorithms, the user is concerned with
the relevance of top results chosen among millions of docu-
ments, rather than the underlying relevance score calculated
by the algorithm to achieve the particular ranking and its
implications about a particular instance.

Irrespective of the problem being solved, all machine learn-
ing solutions require evaluation metrics that can be contin-
uously calculated and used to train and optimize the ML
model. Good evaluation metrics are critical for the success
of a machine learning model optimizing on those metrics,
and there are several di↵erent ones introduced in literature,
such as MAP, MRR, and DCG, to mention a few. Mean
Average Precision, or MAP, computes the precision of the
ranking of each relevant document given a user query and
averages it over all relevant documents. Mean Reciprocal
Rank (MRR), meanwhile, computes the average Reciprocal
Rank rank over all user queries, where the RR of a single
query is the reciprocal of the rank position of the highest
ranking relevant document in the ranked list.

Though MAP and MRR are commonly used in IR to es-
timate relevance, they are binary measures, i.e. they treat
all documents as either relevant or not. Therefore, the need
for a more complex measure that takes into account multi-
level relevance arises. Discounted Cumulative Gain (DSG),
perhaps the most widely used relevance measure in IR liter-
ature, iterates through the ranked list and penalizes highly
relevant documents appearing lower in the list than less rel-
evant ones with values proportional to their relevance level.
The penalty value is discounted using each document’s rank
in the final list. DSG will be used later in this paper to eval-
uate the performance of our own Learning to Rank runs.

Di↵erent ranking models have been developed in Learn-
ing to Rank literature. All models can be roughly classi-
fied as either query-dependent or query-independent models,
based on the techniques employed in retrieving relevant doc-
uments given a user query. In the case of query-dependent
approaches, documents are retrieved based on occurrences
of query terms. Query-dependent approaches vary from the
Boolean model, whereby documents are either relevant or
not, to more sophisticated approaches such as the Vector
Space Model (VSM), that employ techniques such as cal-
culating term frequency and inverse document frequency
and using those to weight query terms di↵erently. On the
other hand, query-independent models rely exclusively on
the properties of a document when deciding where the docu-
ment should rank. Query-independent models are especially
applicable to web search tasks, where many reliable quality
metrics are available and easily recomputable for any url.
For instance, the number of inlinks, outlinks, references, etc.
are all indicators of the reliability/popularity of online doc-
uments that can be used to rank urls in query-independent
ranking solutions.

Apart from di↵erent document retrieval approaches, there
are also distinct flavors of learning to rank algorithms. Three



widely known LTR schemes are the pointwise, the pairwise,
and the listwise approaches. While the former is on the
traditional machine learning end of the spectrum, the latter
two reflect the nature of learning to rank as a task concerned
with relative, rather than absolute, scoring. Although the
latter sections of this report treat and implement the learn-
ing to rank task as a classification problem, which as will
soon be clear is considered a pointwise solution, all three
approaches will be explained, compared and contrasted be-
low.

Pointwise approaches to learning to rank are concerned
with one instance/document at a time. Their input space
is a single feature vector representing one document, while
their output space consists of numerical relevance predic-
tions for individual documents. Pointwise solutions attempt
to make numerical predictions that reflect a document’s de-
gree of relevance to the query, without considering any other
documents in the process. The loss function optimizes rel-
evance predictions for single documents against the ground
truth. Relevance scores are calculated for every instance,
and the ranking is produced simply by sorting the list of
documents by relevance score. Though the simplest strat-
egy to implement, since it applies widely used regression
or classification techniques to solve the problem, pointwise
ranking performs the least well in practice, mainly because it
considers documents independently and not relative to each
other.

Unlike pointwise approaches, pairwise solutions do not at-
tribute relevance scores to documents independently. Rather
than looking at single document instances, pairwise approaches
are concerned with the relative ranking of pairs of docu-
ments. Their input space consists of pairs of documents,
while the output spaces is encoded into pairwise preferences
between document pairs, which take values from the set
�1, 1. Given a query and two documents associated with
it, a pairwise solution is trained to decide on the correct
relative position of the two documents in a potential rank-
ing, essentially ruling on which one is more relevant to the
given query. In this approach, the problem can be viewed
as a classification task on document pairs. The natural goal
for a pairwise approach is then to produce a final ranking
that minimizes the number of inversions, i.e. the number
of documents pairs found in the wrong order. In the limit-
ing case in which all document pairs are correctly classified,
all documents will be ranked correctly as well. Of course,
classification in this context is di↵erent than in the point-
wise approach context, as it is repeatedly applied to pairs of
documents rather that the entirety of the document set.

Many famous ranking algorithms fall under the umbrella
of pairwise approaches and are used to date in search en-
gines, recommendation systems, etc. RankNet, LambdaRank
and LambdaMART are all pairwise solutions, just to men-
tion a few. Many new pairwise approaches developed over
time and proven to improve performance according to some
standardized evaluation metric have come about as combi-
nations of earlier solutions and new insights, building on
previous models but improving the techniques involved in
order to boost performance. In fact, the three algorithms
mentioned above are all derived from the first one, RankNet.

In the case of RankNet, the underlying classification model
can be any model whose output is a di↵erentiable function
of its parameters (weights). After partitioning the training
dataset by query, input feature vectors (representing doc-

uments) are mapped to score values. For a given query,
those scores are mapped to a learned probability that one
document should have higher rank than the other, using a
sigmoid function (to restrict output to the range [0, 1]). In
the case of neural networks being used as the underlying
model, the sigmoid function mapping is particularly useful,
as it has been shown to produce good probability estimates.
The loss function is then applied, penalizing the di↵erence
between the output and the desired probability estimates.
Stochastic Gradient Descent (SGD) is then used to reduce
cost, repeatedly updating the weights of the model based on
the gradient of the cost function.

Although RankNet performs reasonably well on optimiz-
ing pairwise errors, LambdaRank was introduced as an im-
provement over the RankNet algorithm. The fundamental
insight that led to LambdaRank being introduced was the
observation that gradients need not be derived from the cost
function, but rather can be directly calculated and used, by-
passing the di�culties introduced by flat or discontinuous
functions. Burgess et. al. presented this idea and suggested
that the gradients of the cost, symbolized by the Greek letter
lamdba (̂Iż), can be thought of as forces acting on documents
in the list, moving them up or down in the ranked list until
equilibrium. In LambdaRank, the gradients of the costs with
respect to model costs are repeatedly accumulated for every
document and summed to update the weights on each iter-
ation of the algorithm. The fact that back-propagation was
no longer necessary for learning, as was the case in RankNet
training using neural networks, LambdaRank proved much
faster in practice than its predecessor.

Finally, LambdaMART is the boosted tree version of Lamb-
daRank, combining the existing LamdaRank model and the
MART class of algorithms. The output of MART algo-
rithms, which utilize boosted trees, is a linear combination
of the outputs of a set of regression trees.4. The idea be-
hind boosted trees is the following. Data is thought of as
residing on the root node of a tree. Given a feature vec-
tor and a specific feature from the vector, we loop through
the training data and compute a threshhold value such that
vectors with a higher value for the particular feature fall to
the right child, while all others fall to the left child. The
threshold is calculated such that the combined least squares
error from both subtrees is minimized. Therefore, there is a
fundamental di↵erence in the way LambdaMART updates
its weights. Whereas LambdaRank updates all parameters
after each query is examined, LambdaMART updates its
weights gradually. Specifically, only the split values for the
current tree nodes are calculated at each node.

The advantages of LambdaMART seem to be agreed upon
by the literature studied. The speed-up observed in the case
of LambdaMART appears to be significant and can be at-
tributed to the boosted trees model being utilized instead
of the neural net equivalent, which requires more time to
be trained and optimized. On top of that, boosted tree en-
sembles are supposed to be especially well suited for multi-
class classifiers, hence the improved performance of Lamb-
daMART over both LambdaRank and RankNet (LambdaMART
won the 2010 Yahoo Learning to Rank challenge).

The final approach to learning to rank is known as the
listwise approach. The input space of listwise algorithms
consists of the entire list of documents associated with a

4Burgess, 11



given query, rendering the problem significantly more com-
plex than predicting relevance scores for individual docu-
ments (pointwise) or deciding between pairs of documents
(pairwise). Depending on the flavor of the listwise algo-
rithm implemented, the output space of this approach may
consist of either relevance degrees for all documents asso-
ciated with the given query, or a ranked list (optimized
permutation) of the documents. In the former case, the
trained model directly optimizes the measure used to eval-
uate the performance of the solution. The di�cutly in this
stems from the fact that evaluation metrics, such as MAP
and NDCG, are position-based, and therefore discontinuous
and non-di↵erentiable. Examples of algorithms directly op-
timizing evaluation metrics include SoftRank, which intro-
duces randomness to the ranking scores of documents and
calculates the expected value of NDCG@m as the objective
function for learning to rank, and AdaRank, which utilizes
boosting to optimize evaluation metrics. In the latter case,
the loss function calculates the inconsistency between the
algorithm’s output permutation and the ground truth rank-
ing. Di↵erent distributions on permutations can be used for
ranking loss in this case. ListNet, for instance, makes use of
the Luce model, one of the various proposed models for rep-
resenting permutation probability distributions. Compared
to previous algorithms, the listwise approach’s overarching
advantage stems from the loss function’s capacity to solely
consider the positions of all documents in the ranked list
associated with the same given query.

3. EXPERIMENTS

3.1 Methods Studied

3.1.1 Discounted Cumulative Gain (DCG)

The aim of the methods studied is to find a number of
ways of gathering quality for the entire ranking. An exist-
ing method that is popularly used in web search and other
recommendation systems include the DCG, a measure of
performance and non-binary relevance based on graded rel-
evance of the given entity. Discounted gain is accumulated
through the ranks taking a top-down approach âĂŞ the gain
may be reduced, or discounted, at lower ranks. [X - stand-
ford]:

As further metrics such as average precisions are designed
for binary metrics, DCG is designed to provide metrics for
non-binary cases, where the utility is penalised by the rank:

DCGk =
kX

i=1

2reli � 1
log2 (i+ 1)

* DCGk - The maximum number of entities that can be
recommended

* rel - utility of a given document
The idea behind the DCG is to assume:
1. Documents of high relevance are more useful than doc-

uments that are marginally relevant.
2. Documents assigned a lower rank are less relevant, thus

less useful for the user based on its likelihood to be.

3.1.2 Normalised Discounted Cumulative Gain (NDCG)

By taking the DCG of the ranking that is received, divided
by the best possible ranking - we get normalized version
of DCG. The graded relevance of a given entity is ranked

between 0.0 to 1.0. [X - kaggle]. Where 1.0 represents the
ideal ranking of an entity:

nDCGk =
DCGk

IDCGk

* IDCGk - the maximum possible (ideal) DCG for a given
set of queries, documents and relevances

An ideal ranking works by first returning the documents
with the highest relevance level, followed by the next, etc.
The output computes the precision at rank for each retrieved
relevant document. NDCG is computed by dividing the
DCG by the Ideal Discounted Cumulative Gain (IDCG).
The higher the nDCG, the better ranked list.

3.1.3 Precision & Recall

By observing the computed precision and recall at each
rank, we are able to determine the search engine behaviour
at a per query-doc level. Precision looks at a certain thresh-
old in a ranking, we use further metrics such as MAP for an
overall understanding of our ranking performance.

The F1 score is used through implementation for observa-
tion and measurement of accuracy using statistics precision
p and recall r . Precision is defined as the ratio of true posi-
tives of all predicted positives (tp + fp). Recall (tp + fn) is
defined as the ratio of true positives to actual positives:

F1 = 2
pr

p+ r

where p =
tp

tp+ fp

, r =
tp

tp+ fn

F1 weights recall and precision the same. We use this
measure to exercise the ranking system by observing its out-
put as a good ranking system will aim in maximising both
precision and recall.

3.1.4 Mean Average Precision (MAP)

During the tuning process of an algorithm, we use a com-
mon MAP metric to calculate the average of precision values
at the ranks where relevant documents occur. Specifically,
an indicator of the average of precisions in a single rank.
This in contrast to Precision and Recall, observes the en-
tire ranking process of all relevant documents where heavier
weights are assigned to the start of the rank:

ap@n =
nX

k=1

P (k)/min(m,n)

* P(k) - precision at cut-o↵ k in the item list, equals 0 if
k-th item is not followed upon recommendation

* m - is the number of relevant nodes; n is the number of
predicted nodes.

* If the denominator is zero, P(k)/min(m,n) equals zero.

3.2 Dataset Statistics
Microsoft released two large scale datasets for research

on learning to rank. They contain feature vectors extracted
from query-url pairs with relevance judgement labels defined
by a retired labeling set from Microsoft Bing, consisting
of values 4 (very relevant) to 0 (irrelevant). The datasets
include MSLR MSLR-WEB10K (1.2G compressed) worth
10,000 queries from random sampling.

Microsoft Dataset (MSLR âĂŞ WEB10K) not only pro-
vides data to create machine learning information retrieval



Train Test Validation Total

Query-doc pair 723,412 241,521 235,259 1,200,192
Unique Queries 6,000 2,000 2,000 10,000
Rel Score 0 377,957 124,784 121,522 624,263
Rel Score 1 232,569 77,896 75,815 386,280
Rel Score 2 95,082 32,459 31,910 159,451
Rel Score 3 12,658 4,450 4,209 21,317
Rel Score 4 5,146 1,932 1,803 8,881

Table 1: Dataset statistic, Fold1

Mean 120.02
Median 110
Max 908
Min 1

Table 2: Documents per query, Fold1

models but saves time and e↵ort by providing data in easy to
consume and process format taking care of five vital aspects:

· document corpus (with relevant query id and query docu-
ment pairs)

· sampled documents to cover all the instances and not just
belonging to one cluster

· features were already extracted and given as codes to work
with

· meta information was provided that needs to be considered
in document relevancy prediction

· 5 fold validation data to check the model accuracy and
performance

Within each data file, a row corresponds to a query-url pair.
Ordered as relevancy label of the pair, query id followed by
all features:

0 qid : 1 1 : 3 2 : 0 3 : 2 4 : 2 ...135 : 0 136 : 0

2 qid : 1 1 : 3 2 : 3 3 : 0 4 : 0 ...135 : 0 136 : 0

Dataset contains 136 features along with a query-id(qid)
and a relevance score, so we train the model to learn the
relevance score of a particular query given the combined
features of query-document pair.

The dataset is divided into five parts with somewhat equal
query lengths for five-fold cross validation. Some basic statis-
tics form folder 1 of the dataset are presented in Table 1 and
Table 2 above.

3.3 Metrics & Results
RankNet is pairwise learning to rank approach using Gra-

dient Descent to learn and update the weights and model
parameters. Parameters such as batch size and no. of it-
erations were tuned to get the optimal output, which was
measured in terms of NDCG.

batchsize = 50, n iter = 1000, n units1 = 512,
n units2 = 128, tv ratio = 0.0.66,
optimizerAlgorithm = ”Adam”

*n units are the no. of nodes in hidden layer 1 and 2
*tv ratio is the ratio of training and validation set

Figure 1: Gradient Boosting NDCG at 10th position

Gradient Boosting put together multiple weak learners
into one ensemble model that focuses more on the data in-
stances that tend to be misclassified before.

LambdaRank is derived from Ranknet but it calculates
the gradient from candidate pairs, known as lambda and
use that to swap the pair and promptly calculating NDCG.
LambdaMART is based on LambdaRank but implements
Gradient Boosting Trees where gradients are computed after
each new tree to calculate the direction of loss function and
ways to minimise that. It uses the family of MART models
i.e. Multiple Additive Regression Trees.

3.4 Analysis of Results

3.4.1 RankNet, LambdaRank and LambdaMART

When more combinations are tested on LambdaMART,
it improves the NDCG (Normalised Discounted Cumulative
Gain) but it starts showing overfitting on test set. Increase
in no. of trees also deviates the accuracy from validation set
accuracy.

LambdaMART needs tuning of two parameters namely
maximum number of leaves and learning rate, so di↵erent
combinations were tried to get the optimal output which is
calculated at NDCG. Grid search was used to try di↵erent
combinations on a smaller set of data and the final model
was put on use with the full validation and test set to out
the values in table above.



Figure 2: RN, LR and LM NDCG and MAP values

Figure 3: Parameter tuning

3.4.2 Classification Feature Engineering

Prior to the feature engineering stage, the dataset is split
into a training, validation and testing set. Cleansing of the
data included splitting the feature list into multiple columns
for separate interpretation and converting dataframe values
to the correct data type to fit into the model once they were
label encoded. Throughout the iterative process of analysing
features based on relevancy label, features not useful were
dropped to improve the overall ranking.

A total number of 50 features extracted from the vast
amount of features o↵ered in the MLSR dataset include:

converted query term number, inverse doc-
ument frequency, sum of term frequency, sum
of stream length normalised term frequency, all
tf*idf metrics, boolean and vector space models,
language models for IR, page ranks and quality
scores.

Our overall importance through feature extraction process
is to sieve through the relevant features that impact the level
of relevancy. Through this we can drop other non-correlated,
non-relatable features that may add to the noise of accuracy

in predicting unseen query-doc relevancy. To reduce the
number of features, important streams were extracted for
less important features and all streams extracted for more
important features for ranking such as tf*idf calculations.

Using seaborn box-plots similar to those depicted in Fig-
ures 4 and 5 helped to identify the features that show trends
with the relevancy score. An indicator of feature value per-
formance and its impact on the level of relevancy.

3.4.3 Classification Ranking

Logistic Regression Classification model is used for pre-
dicting query-doc relevancy. Based on the features men-
tioned in 3.4.2, the query-doc is grouped in a Pandas data
structure and ranked based on group qid and relevancy score.
In the case a document with the same query-id has the same
relevancy score as another, the highest prediction output
from the relevancy categorical variables is selected by find-
ing the max() of predict proba probability output labelled
as highest prediction, being the final decider of descending
ranks on query id’s with same relevance score.

This regression problem is known as the pointwise ap-
proach described in Section 2, where we gather the predicted
score for highest classifier of the feature vector.

Figure 6 highlights the output for our final ranking algo-
rithm. A number tests were undergone on 100,000 records
versus the entire training and validation dataset. Our find-
ings were such that the more samples that were used, the
more feature input and an increase in lower rank prediction
where fewer query-docs were being predicted a higher rele-
vance score as the observation with smaller datasets was an
increase in higher relevancy score. We were able to under-
stand this behaviour by following through 3.1, putting our
methods into action with our constructed ranking system.

3.4.4 Classification Results

DCG 3.5855583988200541
NDCG 0.54603583399465572
MAP 0.16666666666666669

Table 3: Fold 1 DCG, NDCG, MAP results (1,000
records)

We use DCG in order to emphasise documents of high
relevancy appearing early in the result list - using logarith-
mic scale for reduction. The overall DCG performance for
predicted relevance is 3.58 as a sum of all logarithmic rank-
ing reductions. The DCG of this ideal ordering (IDCG)
is 6.56652581313 computed within NDCG at 0.546. The
NDCG results computed is di�cult to use as NDCG only
takes in partial relevance feedback therefore not a true ideal
ordering of results is computed.

In order to validate the metric from multi-class classifica-
tion and assess its performance through the Logistic Regres-
sion model, we compute the ROC area under the curve and
plot the results in Figure 7. From analytical observation it
is clear the level of true positives are increased for class 0
relevancy ranks followed by class 1 and a poor AUC score
for relevancy classes 3 and 4.

From Table 4 it can be observed the model does an im-
proved job at predicting records that are less relevant but
struggles to maintain a decent F1 score for predicting those
highly relevant query-docs. In recall, the occurrence of 0 for



Figure 4: Covered query term number vs relevancy
(1,000 records)

Figure 5: TF IDF vs relevancy (1,000 records)

Figure 6: Classification Top 10 Ranking Test Output

Figure 7: Classification Top 10 Ranking Test Output



precision recall f1-score support
0 0.56 0.89 0.69 121522
1 0.41 0.22 0.29 75815
2 0.38 0.01 0.02 31910
3 0.00 0.00 0.00 4209
4 0.12 0.00 0.00 1803

avg / total 0.47 0.53 0.45 235259

Table 4: Fold 1 Precision, recall and F1 score on
validation set of LR Classifier

(tp + fn) certifies there are no positive cases of recall in the
input data. For precision, there seems to be an improved
precision in predictions but for category rank 3 indicates 0
for precision (tp + fp) where instances are predicted as neg-
ative. This correlates strongly with the feature modelling in
3.4.2 where a number of these features matched for relevancy
rank ranges 0 - 3 and very few or non existent for relevancy
rank 4. Overall, a better understanding of the di�culties
that may arise when predicting multiple-class labels.

4. DISCUSSION & LIMITATIONS
All the algorithms reduce the ranking problem into fur-

ther subsets. Pointwise algorithms like to reduce it to a re-
gression or classification problem whereas pairwise approach
reduce it to a pairwise classification. Benefits of these ap-
proaches are the ease of use and availability of existing tools
to implement these algorithms. Both these approaches don’t
consider the relevant information ranking features and the
loss function doesn’t take into account the query as well as
position information. Whereas listwise algorithms take into
account the position information and train the model based
on that thus creating ranking based on the query and the
relevancy of document for that query. It gives better re-
sults but at the same time, listwise are hard and complex to
implement.

For the top results for any search query, listwise algo-
rithm performs the best but even pairwise tend to do better
than the pointwise algorithms. Learning to rank problems
are not and should be considered or reduced to normal ML
problems as the results are query dependent and position
specific so a general loss function will not be su�cient to
dictate and judge the accuracy of the results. Data avail-
able for training and validating the models for Learning to
rank algorithm lacks some important features that might
be a↵ecting the rankings on search engines. Click count is
provided along with dwell time, but bounce rate and user
journey can be some other relevant features as well. Heuris-
tic plays an important role in Search Engine clicks through
rate as the snippet of information called meta description,
displayed with the search results, is often a deciding factor
in someone clicking on the link or not. For this feature en-
gineering was carried out on the data to take the meaning
features and leaving out all the ones which will not impact
the rankings that much. Some features can be combined to-
gether. In all a lot of work still needs to be done on feature
engineering for the learning to rank models.

Ranking cannot and should not be simplified to be based
on a loss function as the output space in listwise approach
is a permutation of the relevant documents, which need fur-
ther research to define the rankings based on the relevance
score. Single ranking factor can’t generalise for the all of

query terms as the intention can di↵er for each query : nav-
igational, transactional or just for information. And ranking
models have to be di↵erent for all such queries as well. Peo-
ple searching for brand will be interested in their homepage
but a relevant filter term with query should take them to
that relevant section of the site rather than the homepage
which has got the better page rank and other scoring metric
as compared to that category page.

A limitation found during feature extraction is many of
the features fed into the model linked to relevancies in the
0 - 3 range, where this was reflected in the classification
predictions and the precision, recall and F1 score - not to
mention the overall rank output. Had we undergone further
feature extraction analysis and methods such as combined
models, this could be improved upon.

Another limitation being the scale of available datasets
is way too smaller than actual no. of actual searches per-
formed every day, with biggest data set available containing
just 30K queries whereas there are more than Billion online
searches every day. Sampling is a hard process when avail-
able data is such a small proportion of the actual data that
is available there.

136 features available in the Microsoft data set is a big
list but it’s far short of the optimal no. which is required to
predict the actual ranking.

5. CONCLUSION
Various ranking models can be combined together to ex-

plore the opportunity of increasing the ranking prediction.
Ranknet and LambdaRank do a good job as gradient boost-
ing regressors but LambdaMART can outperform with its
capabilities. Scores of one model can be fed into a second
model to achieve even better results, though those are still
not guaranteed to be optimal.

For our implemented ranking solution, further work could
be carried out to improve the overall performance. Perhaps
the use of a Gradient Boosting Classifier at this point would
have su�ciently improved the recall, but would need to be
excessively trained to find its optimum performance param-
eter. With the alternative of adding combined features in
the feature vector space.

5.1 GitHub repo
The team’s code can be found at https://github.com/thsol/irdm

6. ACKNOWLEDGMENTS
A big thanks to Dr. Jun and Dr. Emine for their e↵orts

in teaching this module.

7. REFERENCES
[1] Christopher J. C. Burges RankNet: A ranking

retrospective Microsoft Research Blog, July 2015

[2] Donmez, Pinar, Krysta M. Svore, and Christopher JC
Burges. ”On the local optimality of LambdaRank.”
Proceedings of the 32nd international ACM SIGIR

conference on Research and development in information

retrieval. ACM, 2009..
[3] Burges, Chris, et al. ”Learning to rank using gradient

descent.” Proceedings of the 22nd international

conference on Machine learning. ACM, 2005..
[4] Xia, Fen, et al. ”Listwise approach to learning to rank:

theory and algorithm.” Proceedings of the 25th



international conference on Machine learning. ACM,

2008. .
[5] Burges, Christopher JC. ”From ranknet to lambdarank

to lambdamart: An overview.” Learning 11.23-581

(2010): 81.

[6] Li, Ping, et al. ”McRank: Learning to Rank Using
Multiple Classification and Gradient Boosting.”NIPS.

Vol. 7. 2007.

[7] Liu, Tie-Yan. ”Learning to rank for information
retrieval.” Foundations and Trends

ˆ

Aő in Information

Retrieval 3.3 (2009): 225-331.

[8] ”Mean Average Precision.” Kaggle. N.p., n.d. Web. 17
Apr. 2017.

[9] ”Normalized Discounted Cumulative Gain.” Kaggle.
N.p., n.d. Web. 17 Apr. 2017.

8. SOFTWARE
https://www.mathjax.org/
https://sourceforge.net/p/lemur/wiki/RankLib/ (RankNet,

LambdaRank LambdaMart)


