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Abstract 
 

This paper explores approaches to designing and implementing a computer system 
that allows patients with cough to diagnose themselves without input from a medical expert. 
After performing literature review and studying tangential research efforts, we explore 
approaches to modelling the diagnosis process. This involves patient, symptom, and 
diagnosis representation, as well as building a prototype that encodes and utilizes relevant 
expertise to provide reasonable diagnoses to the user. To tackle the complex task of 
diagnosing an arbitrary patient, we simplify the problem to patients with a given “principal 
symptom”, specifically cough. We first attempt to build a simple classification model using 
machine learning techniques. However, this proves to be an extremely challenging task, 
given the lack of sufficient, real-life, well-formatted data, and the absence of a reliable 
mechanism for us to collect such data. Even learning paradigms that require minimal 
training data fail to produce any meaningful results, given the large number of parameters 
of even the simplified version of the problem. As a result, we transition to a probabilistic 
model, and encode domain knowledge in the form of medical expertise (approximating 
statistical evidence). Our prototype overcomes the challenge of lacking realistic data by 
relying on statistical evidence that is widely collected and easily retrievable. In addition, it 
greatly facilitates extensibility and refinement of the model, to allow for further 
experimentation and potential future use. Though this work focuses on patients with cough, 
the approaches discussed, software implementation, and conclusions drawn can be 
generalized to apply to other principal symptoms, and thus to generic patients. 
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I. Introduction 
Doctors Pusztai and Howard of the Yale School of Medicine approached us in August 2017 

with the long-term objective of developing a patient diagnosing system. The ultimate goal 

of their project is to replicate a physician’s approach to questioning a patient and offering 

the most accurate diagnosis available, using a computer model. By encoding the relevant 

medical experience and expertise, the model will enable patients to diagnose themselves 

by entering relevant information about their background, symptoms, and triggers, and will 

finally arrive at one or more possible diagnoses, each associated with a likelihood 

probability. The desired system has to account for at least as many parameters as an actual 

physician does; patient history and previous medical records; family medical history 

records; current, as well as past, patient symptoms, their progression and potential 

recurrence; patient demographic information (age, occupation, etc.); environmental 

triggers; and chronic illnesses/conditions that may help illuminate present symptoms.  

 

In order to simplify the problem and focus our efforts on accuracy, rather than 

breadth of our prototype, we simplify the original definition by considering a special class of 

patients, specifically those whose “principal symptom” is cough. The use of the principal 

symptom, which the doctors defined as the “main symptom of the patient”, as a starting 

point for our application, was inspired by the fact that doctors use the principal symptom 

themselves to determine the sequence of questioning to be followed during diagnosis. By 

focusing our research on popular real-world algorithms for diagnosing cough, and collecting 

data and findings specific to our subset of patients, we render the problem significantly 

more manageable. At the same time, by presenting our findings in a general fashion, and 

designing our web application with a doctor-facing interface that allows for additions, 

modifications, and refinements, we ensure that the software can be extended or adapted 

to include an arbitrary number of additional principal symptoms, questions and diagnoses. 

 

The main challenge faced in this project was the lack of patient data, enough to build 

a machine learning classifier, specific enough for the purposes of parametrizing and training 

our model, or accurate enough to guarantee good results. We initially experiment with a 
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number of classification approaches, including a Decision Tree Classifier and a Bayesian 

Network prototype, using data produced by us and manually labeled by the doctors. 

However, such learning models that generally work well even with small data sets, proved 

to be of little use, given the large number of parameters our model has to account for. 

 

We thereby transition to a probabilistic model that allows us to use statistical data 

collected from any reliable source, or alternatively doctors’ experience from studying or 

treating particular diseases. Specifically, we associate answer-diagnosis pairs with an 

estimated relative likelihood of the symptom/answer and the disease being observed 

simultaneously in a given patient. This way, not only can we rely on decades of data 

collection and expertise, but we can also refine the model indefinitely, as discussed in 

sections III, IV, and V, to achieve better results. 

II. Related Work 
In performing literature review, we learned about different approaches to building a 

classifier, as well as examined tangential research conducted in other areas of medicine 

that could provide insights and inform our own approach. 

 

We started by exploring Bayesian Network models as they have been used in Triage 

systems in the past [Sadeghi et al., 2006] that displayed promising results. In “A Bayesian 

model for triage decision support”, data from clinic charts was used to build a Bayesian 

Network classifier, which then attempted to Triage (i.e. prioritize ER visitors based on the 

severity of their medical condition) new patients. Though the dataset used had several 

limitations, including its small size and the need for extracting information from documents 

that are frequently ambiguous, the model generally performed comparably well to the 

human nurse in classifying patients. Characteristics of this approach that are particularly 

appealing are its ability to tolerate a small data set, as well its flexibility in incorporating new 

data into the model, which facilitates refinement and extensibility. 
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We also read about Decision Tree models and studied their advantages and 

limitations, as well as relevant applications in the context of multiclass classification. Song 

et. al., 2015 offer a practical, in-depth look into the techniques and best practices of building 

classifiers using a Decision Tree, and discuss ways the particular approach is suited for 

applications in medical research. Meanwhile, “Decision trees in epidemiological research” 

discusses a particularly relevant application of DT. Venkatasubramaniam et al. (2017) 

attempt to build a model that partitions a population into groups with similar values of some 

outcome variable. The problem shares several characteristics with our own; for instance, 

approximating non-linear relationships, or estimating the effects of both continuous 

variables (e.g. age) and categorical data (e.g. gender) is a challenge shared by the two 

works. After contrasting several techniques and evaluating the models’ effectiveness, the 

paper concludes that although the trees’ results could be helpful, they were not to be 

thought of as conclusive or consistently reliable. 

 

“A Learning Health Care System Using Computer-Aided Diagnosis” discusses the 

relevant topic of computer-aided diagnosing, and provides several useful insights into the 

development of a system that can improve upon a physician’s accuracy in reaching a 

conclusive diagnosis. After outlining several limitations of existing systems, Cahan and 

Cimino (2017) introduce a theoretical framework for developing diagnosis support systems 

in the future, and present schematics of proposed entity relationship models for such 

systems. A particularly interesting insight is offered by the chart-like depiction of the 

conceptual framework proposed (Diagram 1); the right half of the model describes likelihood 

estimations, and is therefore closely related to our ultimate approach and the associated 

prototype application we developed. 

 

There is an increasing number of complicated medical tasks that intelligent systems 

can carry out accurately. Very recently, the Machine Learning group at Stanford developed 

CheXNet, which excels at specific medical tasks; for instance, it performed better than 

medical experts in identifying pneumonia using chest X-Rays. However, the CheXNet 

algorithm was trained using a large dataset of chest X-Rays accompanied by real ground-
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truth labels, the actual diagnoses of the patients. On top of that, the level of specificity of 

the particular problem definition is also helpful in limiting the parameters involved in the 

proposed solution; a model to diagnose patients generally has to account for countless 

more features. Expectedly, not many commercial software tools claim to be capable of 

accurately diagnosing generic patients (i.e. have broad enough capabilities to lead to any 

diagnosis); that is the ultimate goal of Pusztai and Howard. 

 
Diagram 1: Conceptual framework for building computer-aided diagnosis systems. The rightmost half of the 
diagram makes uses of prior probability distributions and patient information to estimate the likelihood of 
encountering a disease in the given patient 

As part of our preliminary research, we searched for and trialed relevant commercial 

software applications available on the internet. iTriage is an iOS application that offers a 

wide variety of medical information, including searching for hospitals and doctors, 

symptoms, diseases, and medication. The user-interface is simple to use and provides 

many additional capabilities, such as tracking one’s medical history and booking 

appointments. We also considered Doctor AI, a recurrent neural network based self-

diagnosing project that utilizes real medical data and patient records collected over 8 years 

to diagnose patients. Though this approach is closer to what we hoped to ultimately pursue, 
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the lack of a primary medical data source prevented us from attempting to train a complex 

RNN model, as similar training data could not be obtained. 

III. Approach 
A. Representation Models 

10 – question 
 

The first step to building a prototype was to establish a model for representing patients, 

diseases, and symptoms, as well as all other relevant information that would traditionally 

be provided by a patient. We begin by modelling a simple Triage interaction of a patient 

with a doctor or nurse. We always assume that the patient’s principal symptom1 is cough. 

We first ask the patient for some general information, presented in Figure 1. 

 We then proceed to asking about symptoms associated with cough, similar to how a 

nurse would in the context of Triage. For our simple model, we use 10 questions, shown in 

Figure 2, and seek a Yes/No answer from the patient. We then attempt to estimate the 

urgency of their present condition based on the observed symptoms and background data 

provided. We used a simple Google Form to create around 20 test patients to be used for 

training. Pusztai and Howard then labelled each patient case with a triage score on a scale 

of 1 (no need for treatment) to 5 (ER emergency), providing our ground truth value.  

 

Figure 1: General information in Triage scenario 

 
 

Figure 2: Symptoms related to cough in Triage scenario 

We quickly refined the model to add several dimensions to the patients’ responses. 

After consulting with the doctors, it was clear that more specific information on a patient’s 

                                                
 
 
1 Primary reason for seeking medical assistance 

Timestamp Name Age Gender Body	Temperature Regular	Smoker?

Cough? Headache? Chills? Sore	Throat? Vomitting? Muscle	Pain? Tiredness? Runny	Nose? Heartburn? Chronic	cough?
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condition would be necessary to appropriately triage them. To that end, we added three 

dimensions to each Yes/No answer; severity, trajectory, and continuity. For each of the 

symptoms shown in Figure 2, three additional questions were asked, shown in Figure 3. 

These are standard follow-up questions that should be asked for all symptoms; according 

to the doctors, they provide information that’s valuable to evaluating a patient’s condition. 

Responses to the first two questions need not in reality be categorical; however, for the 

purposes of our model, we allowed a choice between three options: “Mild”, “Medium”, and 

“Intense”, and “Better”, “Same”, and “Worse”, respectively. 

 
Figure 3: Additional model dimensions in Triage scenario 

100 – question 
 

We moved on to adopting a more detailed model, 

developed with the help of Pusztai and Howard, which uses 97 

responses as model features for a given patient (dubbed the 100 

– question model). The nature of these features is not limited to 

symptom information, but also includes questions related to 

background, family history, and social habits. Answers are once 

again meant to be binary, but increasing 

the feature space now enables us to pose 

highly specific questions that include the 

dimensions presented in Figure 3. A 

selected subset of these questions is shown in Figure 4.  

Similarly, we increase the precision of our predictions; we abandon 

the 0 – 5 scale and use a list of diseases as categorical outcomes of 

the predicted output variable, the diagnosis. Recall, we are 

attempting to diagnose a patient, rather than to simply triage them. 

Figure 5 displays some of the 23 diagnoses associated with the 

principal symptom of cough in our final model. 

  

How intense? Are these symptoms getting..? Chronic?

Female?
Exposure	to	allergen?
Exposure	to	irritant?
Occurs	in	the	morning?
Worse	when	lying	down?
Worse	after	exercise?
Recent	abdominal	surgery?
Non-smoker?
<20	pack	years?
20	-	40	pack	years?
Asbestos	exposure?

Female? Viral	infection

Exposure	to	allergen? Post-viral	cough

Exposure	to	irritant? Influenza

Occurs	in	the	morning? Pertussis

Worse	when	lying	down? Pneumonia

Worse	after	exercise? TB

Recent	abdominal	surgery? Bacterial	sinusitis

Non-smoker? Stable	asthma

<20	pack	years? Asthma	exacerbation

20	-	40	pack	years? Stable	COPD

Asbestos	exposure? COPD	exacerbation

Figure 4: Features in diagnosis 
scenario 

Figure 5: Diagnoses in 
diagnosis scenario 
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B. Decision Tree Classifier 

First, I implemented a Decision Tree classifier to triage patients from the 10 – question 

model presented above. A tree was among the most appropriate machine learning 

approaches available given our lack of sufficient data to train more complex models like 

neural networks. Decision trees can be built with arbitrarily few data points, and have an 

intuitive visual representation; they can also be easily refined or reconstructed. 

 

After importing the model patient responses (which we created) into Python, some 

data manipulation was required before building the classifier. Incomplete data had to be 

identified and replaced with neutral values (mostly “No”s). Textual responses were 

converted into categorical values (specifically integers) to be compatible with the classifier. 

Finally, ground truth labels were imported and associated with each patient. After several 

trials using tiny datasets we created, a typical decision tree produced by our approach 

looked something like the tree depicted in the Figure 6. The sklearn Python module was 

used for training; numpy and pandas were used for data manipulation. 

 

The main limitation of this approach is that the model produced, though 100% 

accurate on training data, may not learn to make decisions about important parameters. 

Specifically, if the training data of the Decision Tree Classifier is not diverse, then the model 

will not learn how to use features that are scarce in the training population, and therefore 

will perform poorly on diverse testing datasets. Visualizing the DT below helps identify a 

significant barrier; the vast parameter space of our model, in conjunction with the lack of 

extensive and appropriately detailed training data, render any decision tree we produce of 

little use. As we can see, the training data points are first split by body temperature, then 

by intensity of cough; finally, some subset of the tree is further split by age. Other 

parameters, including most all experienced symptoms, have not been learned on; in other 
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words, our tree can classify all our made-up patients accurately without even considering 

their symptoms. That is clearly a failure to build a model sensitive to all relevant parameters, 

mostly stemming from the lack of adequate data discussed above. 

 

C. Bayesian Network 

My teammates, Allen 

Wang and Irene Li, 

explored other popular 

techniques for building a 

classification system, 

most notably the 

Bayesian Network model 

for classification. In the 

Bayesian Network, 

patient data is used to 

compute conditional 

probabilities that relate 

different parameters of 

Body Temperature <= 0.5
gini = 0.7

samples = 10
value = [4, 2, 3, 1]

Cough <= 1.0
gini = 0.625
samples = 4

value = [0, 2, 1, 1]

True

Cough <= 0.5
gini = 0.444
samples = 6

value = [4, 0, 2, 0]

False

gini = 0.0
samples = 1

value = [0, 0, 0, 1]

Age <= 49.0
gini = 0.444
samples = 3

value = [0, 2, 1, 0]

gini = 0.0
samples = 2

value = [0, 2, 0, 0]

gini = 0.0
samples = 1

value = [0, 0, 1, 0]

gini = 0.0
samples = 2

value = [0, 0, 2, 0]

gini = 0.0
samples = 4

value = [4, 0, 0, 0]

Figure 6: A visualization of the learned decision tree model on our tiny dataset 

         Figure 7: Simple Bayesian Network likelihood estimator 
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the model with each other, as well as with the predicted output variable. Evidence about 

the state of the system (i.e. the patient’s symptoms, background, family history, social habits 

etc.) is then used to make predictions. Specifically, statistical tools such as likelihood 

maximization are used to produce a probability distribution of the possible values of the 

output variable, in our case the diagnosis. A visualization of a simple Bayesian network 

demo performed on made-up data from out 10 – question model is shown in Figure 7. 

Expectedly, the accuracy of the model is sensitive to the quality and quantity of data; once 

again, the lack of a sufficiently large dataset of real patient information prevented us from 

pursuing this solution further. 

 

D. Maximum Likelihood Estimator 

To overcome the difficulties encountered in training Decision Tree and Bayesian Network 

classifiers, we had to consider approaches that did not require a large dataset of recorded 

patient symptoms. As a result, we moved away from machine learning solutions, and 

considered a probabilistic model that remedies the situation, allowing us to produce a much 

more detailed and meaningful diagnosing prototype. 

 

 For the purposes of building a likelihood estimator, we developed and used the 100 

– question model outlined earlier. Each principal symptom 𝑝$ is associated with a vector of 
questions 𝒒 and a vector of diagnoses 𝒅. Moreover, each tuple (𝑝$, 𝑞*, 𝑑,) is assigned a 

likelihood value 𝑙/0,12,34 ∈ 	 (0,∞), the likelihood that a patient with principal symptom p: and 

an affirmative answer to q< is diagnosed with 	d>, relative to the entire pool of patients with 

𝑝$. To compute the relative likelihood of each 	d> for a given patient, we first produce vectors 
𝒓𝒒,𝒅𝒌 of likelihoods applicable to the patient, based on their responses to each question q*; 

specifically, r12,34 = 𝑙/,12,34 if the patient answered “Yes” to q<; otherwise, r12,34 = 1.  

r12,34 = (𝐴𝑛𝑠𝑤𝑒𝑟	𝑡𝑜	𝑞*	𝑖𝑠	"Yes"	?	𝑙/,12,34 ∶ 	1) 

We then define the likelihood of some diagnosis 	dR for the given patient as follows: 

𝑙𝑖𝑘 	dR =
1
r12,34*,

r12	3T
*
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In other words, given a relative likelihood table 𝑙/	 and a list of patient answers (evidence 

observed), we consider the product of the applicable likelihoods for each diagnosis, and 

normalize by the sum of such likelihood estimations for all diagnoses. We defined the result 

to be the relative likelihood of the given patient to suffer from 𝑑,, given his principal symptom 
𝑝$ and his responses to each question 𝑞*. 

 

The rationale behind building a likelihood estimator was that statistical information 

about the demographics, symptoms, background and social history of populations 

diagnosed with the same condition, is generally available by a variety of medical sources. 

Moreover, such statistics have been recorded for years, so their validity can be cross -

checked and evaluated. There is little ambiguity in interpreting the data; for instance, “how 

much more likely than a random individual is it for a smoker to be diagnosed with lung 

cancer?” is a clear question with a single numerical answer. In addition, such statistical 

information can be approximated by a doctor’s expertise. Therefore, in the absence of 

recorded data, or for testing model variability, a physician can use their knowledge and 

experience to estimate such relative likelihood values. In fact, that is the case with the 

“cough” likelihoods table; the likelihood values encoding the relationship between questions 

and diagnoses in our final model were produced by Howard. Of course, meticulous research 

performed by a physician could gather more accurate likelihood estimations. Therefore, 

given enough time and sources, the model can be refined and improved indefinitely. 

 

The limitations of this model are clear. The approach requires us to make several 

assumptions; first, we assume that listing all possible diagnoses associated with a principal 

symptom is feasible, which is not realistically the case. The same is applicable to questions 

a patient is asked; even the 100 – question model doesn’t come close to exhausting the 

potentially relevant questions a real-life patient could be asked by a physician, and that’s 

only for the simplified problem of diagnosing cough. In addition, the model fails to consider 

connections between answers to different questions, i.e. conditional likelihoods that may 

affect the resulting calculation significantly. For instance, the answer to “how much more 

likely than a random individual is it for a smoker to be diagnosed with lung cancer?” could 
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differ significantly based on the gender of the examined patient; such insights are not 

captured by the current approach, and could only be incorporated by adding features 

(questions) with higher specificity to the model, along with their conditional likelihoods. 

 

Another limitation of such a probabilistic solution is that is doesn’t encode any 

qualitative expertise that is useful to efficiently arriving at an accurate diagnosis. As we 

learned by studying exiting algorithms for triaging patients, different answers to specific 

questions often affect the sequence of questioning a doctor would perform, triggering 

relevant follow-ups and or necessary clarifications. Such patterns can’t be learned by a 

probabilistic model, which implies that the questioning process will likely be slower and less 

efficient, occasionally posing unrelated questions, or failing to ask conditionally relevant 

ones. Though the described qualitative knowledge can be approximated by manually 

designing a conditional question sequence on the patient-facing side of the system, 

attempting to do so would be tedious and likely really hard, as the possible scenarios 

increase exponentially with the number of questions asked and answers allowed. 

IV. Web Application 
The prototype application we produced was designed to be simple, extensible, and robust. 
It follows a traditional 3-tier architecture, outlined in Diagram 2 below. 

Diagram 2: Three-tier architecture paradigm in our prototype application 



13 

The application is based on the probabilistic model discussed in III(D), and was designed 

to be lightweight, user-friendly, and easily extensible. The following table outlines the 

requirements of the prototype application, as they were discussed and revisited through 

meetings with Pusztai and Howard, and our individual contributions to development: 

ID Description Priority State Contributors 

1 Web application easily accessible over the web Must Complete Allen, 
Stelios 

2 Entity representation adapted for efficient database 
storage and retrieval (using SQLite) 

Must Complete Allen, 
Stelios 

3 Robust server functionality that performs calculations 
and returns results efficiently  

Must Complete Stelios 

4 Client-facing service for patient self-diagnosing; user-
friendly interface, comprehensive questions 

Must Complete Allen 

5 Display comprehensive diagnosis results to patient, 
along with corresponding calculated probabilities 

Must Complete Stelios 

6 Ability to register and log users in with personal 
credentials 

Should Complete Stelios 

7 Ability to remember previous diagnoses of returning 
users; history available to display 

Should Complete Allen 

8 Doctor-facing interface for refining or adding to the 
existing model 

Should Complete Allen 

9 Modular code design to facilitate future maintenance 
and extensibility 

Should Complete Allen, 
Stelios 

10 Application deployment Must Complete Allen, 
Stelios 

 
Database 
 

We store all data in a local database file named triage.db. We use SQLite to avoid the 

added complexity of relying on a SQL server, and to ensure the application is versatile, 

easily deployable and environment-independent. I devised a data storage scheme that 

allows for maximal flexibility in designing a database API and manipulating data, while 
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eliminating data repetition. Specifically, tables principals, diagnoses, and questions, hold 

the textual values of all principal symptoms, potential diagnoses, and diagnostic questions 

respectively, and map them to a unique integer value for easy reference and manipulation. 

The schema for the three tables is shown in Figure 8. The likelihoods table then maps 
likelihood tuples 𝑙/0,12,34 (see Section III) to likelihood values in a simple schema shown in 

Figure 9. This design minimizes data duplication, and allows for efficient data retrieval. 

 
Figure 8: Structure of principals, diagnoses, and questions tables 

 
Figure 9: Structure of tuple-to-likelihood mapping in likelihoods table 

To allow users to maintain an account on our application, we created the table users, to 

store a (unique) username, hashed password, and quality (patient/doctor) for each 

registered user (see Figure 10). We also maintain the history of diagnoses performed by 

each user using 3 tables, history, patient_input, and patient_results; this design (see Figure 

11) ensures we can efficiently store an arbitrary amount of provided answers and produced 

diagnoses for each patient, once again minimizing data repetition. 

 
Figure 10: Structure of users table 

 The design of the database tables is an important element of the prototype 

application. With the proposed schemas, it becomes easy to add new data (including users, 

principals, diagnoses, questions, and likelihoods) as well as to represent relationships 
between them (e.g. add new 𝑙/0,12,34 → 𝑣 ∈ (0,∞) mappings). As such, the model is not 

Field Type Not NULL Primary Key
0 id INTEGER Yes Yes
1 name TEXT Yes No

Field Type Not NULL Primary Key
principal INTEGER Yes Yes
diagnosis INTEGER Yes Yes
question INTEGER Yes Yes
likelihood REAL Yes No

Field Type Not NULL Primary Key
id INTEGER Yes Yes
username TEXT Yes No
hash TEXT Yes No
doctor BOOLEAN Yes No
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Figure 11: Structure of history, patient_input, and patient_results tables respectively 

limited to the data it currently contains. It can be refined indefinitely by improving likelihood 

mappings, adding new (and more specific) questions, enriching the list of diagnoses, etc. 

 
Back-end (server) 
 
My work focused on the database schema (detailed above) and the design and 

development of the server functionality. Python was chosen for our server because of the 

wide variety of data manipulation, server framework, and database libraries available in the 

particular language. We used Flask,2 a Python server micro-framework, as our server’s 

particularly lightweight backbone.  

 

For communication with the database, I developed a simple SQLite API for retrieving 

and modifying data in the SQL tables (found on the bottom of application.py). We broke 

down the server functionality into simple endpoints, and separated model logic from server 

functionality by maintaining distinct “method” and “endpoint” sections in the code. The all-

                                                
 
 
2 http://flask.pocoo.org/ 

Field Type Not NULL Primary Key
id INTEGER Yes Yes
user_id INTEGER No No
principal_id INTEGER No No

history INTEGER No No
question INTEGER No No
response INTEGER No No

history INTEGER No No
diagnosis_id INTEGER No No
diagnosis_name TEXT No No
probability REAL No No
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around modularity of the code offers significant flexibility in factoring-out and reusing parts 

of it, while ensuring that potential future enhancements are straightforward to perform. 

 
Front-end (client) 
 
The client-facing part of the prototype (front-end) was developed by my partner, Allen 

Wang. HTML and CSS, as well as the templating language Jinja were used for webpage 

rendering.3 The client’s two main components are the patient-facing and doctor-facing 

interfaces. The “Diagnose” interface can be used by both types of users to self-diagnose 

and produce likelihood estimations for the available diseases; in addition, doctor accounts 

can refine the stored data model by editing existing likelihood mappings, as well as adding 

options to the principals, diagnoses, and questions tables. Data validation is also performed 

in the front-end using Javascript, ensuring fault-tolerance while eliminating the need for 

unnecessary communication with the server. 

  

 Screenshots of the final product are presented on the next page. Figure 12 depicts 

the results page (where the probability distribution over potential diagnoses is displayed) 

after the patient has responded to all questions and the likelihood calculations have been 

performed. The history feature of our prototype is displayed in Figure 13, while one aspect 

of the doctor-facing interface that allows for modifications of the existing model (in this case, 

editing likelihood mappings) is shown in Figure 14. 

 

Plan for deployment 
 
We plan to deploy the application in December 2017, likely on Heroku or a similar cloud 

platform. For development and testing, a workspace on the Cloud9 IDE was used (c9.io). 

 

                                                
 
 
3 http://jinja.pocoo.org/ 
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Figure 12: Examples of inconclusive (top) and conclusive (bottom) diagnostic results produced by 

the prototype application, in the form of percentage likelihoods of particular diagnoses 

 
Figure 13: Screenshot of user history feature, whereby a registered user can revisit past results 

 
Figure 14: Screenshot of the doctor-facing interface for modifying likelihood values in the model 
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V. Future Work & Conclusions 
 Lacking relevant testing data and objective truth labels to use in evaluating our 

prototype on, we are required to perform manual tests and consider the produced results 

individually. In 10 trial runs, the application returned reasonable results, according to our 

test subjects and the doctors; on one occasion, it successfully diagnosed Professor Radev’s 

viral infection (with an estimated probability > 80%), while in another, it produced multiple 

results (a probability distribution) that Pusztai and Howard deemed as “very reasonable 

suggestions”. 

 

 The most important outcomes of this project are the conclusions we can draw about 

the nature of the problem at hand, and the suggestions we can make regarding pursuing 

the next stages of this long-term effort. Indeed, the different techniques we experimented 

with, though often unsuccessful, led us to define the problem much more precisely; identify 

many of the potentially infinite parameters involved; acquire a much better understanding 

of the requirements of a feasible solution; and take the first step toward the ultimate goal of 

building a complicated model for general self-diagnosis. 

 

 The main limitations of the current approach are detailed in section III(D). However, 

improvements to the model can also be proposed. Via meticulous collection of evidence, a 

more accurate likelihood estimator can be built. If rigorous statistical results eventually 

replace the doctors’ rough approximations of likelihood values, the model will likely provide 

better estimates of the posterior probability of each diagnoses for a given patient. We can 

also envision the model accounting for conditional probabilities, combining existing 

questions with relevant information such as place of origin, genetics, and other factors that 

may alter likelihood values significantly, to potentially improve results. With that in mind, a 

user-friendly interface was created to facilitate modifications to the model, while eliminating 

the need for the doctors to ever interact with the database or the code directly. By adding 

questions with higher specificity, the precision of the likelihood estimator can be improved. 
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 In planning next steps and moving the project forward, we strongly advised Pusztai 

and Howard to pursue access to real-life patient and diagnostic data. A good dataset will 

allow for the development of a more complex model, presumably based on some Recurrent 

Neural Network architecture. Two sources the doctors are currently considering are 

handwritten reports from patient examinations, and electronically submitted forms of 

background and symptom information from patient visits to a hospital. The former approach 

poses an interesting NLP challenge, and has the advantage of virtually unlimited availability 

of training data. The latter approach is more convenient in that the data is electronically 

stored, and therefore more easily parsed; in addition, data points and information collected 

will be much more standardized in the case of electronic forms than in that of doctors’ 

individual notes. In either case, models based on real patient diagnoses will not only be 

able to extract patterns that may even be foreign to doctors, but will also automatically learn 

to simulate doctor – patient interactions more effectively. Such models may also leverage 

continuity, making use of previous diagnoses (and related statistical observations) to better 

estimate likelihoods. 
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