CPSC 470 ¢ December 2017

A System to Diagnose Patients with Cough
Stylianos Rousoglou

Yale University

Advisor: Professor Dragomir Radev

Abstract

This paper explores approaches to designing and implementing a computer system
that allows patients with cough to diagnose themselves without input from a medical expert.
After performing literature review and studying tangential research efforts, we explore
approaches to modelling the diagnosis process. This involves patient, symptom, and
diagnosis representation, as well as building a prototype that encodes and utilizes relevant
expertise to provide reasonable diagnoses to the user. To tackle the complex task of
diagnosing an arbitrary patient, we simplify the problem to patients with a given “principal
symptom”, specifically cough. We first attempt to build a simple classification model using
machine learning techniques. However, this proves to be an extremely challenging task,
given the lack of sufficient, real-life, well-formatted data, and the absence of a reliable
mechanism for us to collect such data. Even learning paradigms that require minimal
training data fail to produce any meaningful results, given the large number of parameters
of even the simplified version of the problem. As a result, we transition to a probabilistic
model, and encode domain knowledge in the form of medical expertise (approximating
statistical evidence). Our prototype overcomes the challenge of lacking realistic data by
relying on statistical evidence that is widely collected and easily retrievable. In addition, it
greatly facilitates extensibility and refinement of the model, to allow for further
experimentation and potential future use. Though this work focuses on patients with cough,
the approaches discussed, software implementation, and conclusions drawn can be
generalized to apply to other principal symptoms, and thus to generic patients.

. Introduction

Doctors Pusztai and Howard of the Yale School of Medicine approached us in August 2017
with the long-term objective of developing a patient diagnosing system. The ultimate goal
of their project is to replicate a physician’s approach to questioning a patient and offering
the most accurate diagnosis available, using a computer model. By encoding the relevant
medical experience and expertise, the model will enable patients to diagnose themselves
by entering relevant information about their background, symptoms, and triggers, and will
finally arrive at one or more possible diagnoses, each associated with a likelihood
probability. The desired system has to account for at least as many parameters as an actual
physician does; patient history and previous medical records; family medical history
records; current, as well as past, patient symptoms, their progression and potential
recurrence; patient demographic information (age, occupation, etc.); environmental

triggers; and chronic illnesses/conditions that may help illuminate present symptoms.

In order to simplify the problem and focus our efforts on accuracy, rather than
breadth of our prototype, we simplify the original definition by considering a special class of
patients, specifically those whose “principal symptom” is cough. The use of the principal
symptom, which the doctors defined as the “main symptom of the patient”, as a starting
point for our application, was inspired by the fact that doctors use the principal symptom
themselves to determine the sequence of questioning to be followed during diagnosis. By
focusing our research on popular real-world algorithms for diagnosing cough, and collecting
data and findings specific to our subset of patients, we render the problem significantly
more manageable. At the same time, by presenting our findings in a general fashion, and
designing our web application with a doctor-facing interface that allows for additions,
modifications, and refinements, we ensure that the software can be extended or adapted

to include an arbitrary number of additional principal symptoms, questions and diagnoses.

The main challenge faced in this project was the lack of patient data, enough to build
a machine learning classifier, specific enough for the purposes of parametrizing and training

our model, or accurate enough to guarantee good results. We initially experiment with a

number of classification approaches, including a Decision Tree Classifier and a Bayesian
Network prototype, using data produced by us and manually labeled by the doctors.
However, such learning models that generally work well even with small data sets, proved

to be of little use, given the large number of parameters our model has to account for.

We thereby transition to a probabilistic model that allows us to use statistical data
collected from any reliable source, or alternatively doctors’ experience from studying or
treating particular diseases. Specifically, we associate answer-diagnosis pairs with an
estimated relative likelihood of the symptom/answer and the disease being observed
simultaneously in a given patient. This way, not only can we rely on decades of data
collection and expertise, but we can also refine the model indefinitely, as discussed in

sections lll, IV, and V, to achieve better results.

[l. Related Work

In performing literature review, we learned about different approaches to building a
classifier, as well as examined tangential research conducted in other areas of medicine

that could provide insights and inform our own approach.

We started by exploring Bayesian Network models as they have been used in Triage
systems in the past [Sadeghi et al., 2006] that displayed promising results. In “A Bayesian
model for triage decision support”, data from clinic charts was used to build a Bayesian
Network classifier, which then attempted to Triage (i.e. prioritize ER visitors based on the
severity of their medical condition) new patients. Though the dataset used had several
limitations, including its small size and the need for extracting information from documents
that are frequently ambiguous, the model generally performed comparably well to the
human nurse in classifying patients. Characteristics of this approach that are particularly
appealing are its ability to tolerate a small data set, as well its flexibility in incorporating new

data into the model, which facilitates refinement and extensibility.

We also read about Decision Tree models and studied their advantages and
limitations, as well as relevant applications in the context of multiclass classification. Song
et. al., 2015 offer a practical, in-depth look into the techniques and best practices of building
classifiers using a Decision Tree, and discuss ways the particular approach is suited for
applications in medical research. Meanwhile, “Decision trees in epidemiological research”
discusses a particularly relevant application of DT. Venkatasubramaniam et al. (2017)
attempt to build a model that partitions a population into groups with similar values of some
outcome variable. The problem shares several characteristics with our own; for instance,
approximating non-linear relationships, or estimating the effects of both continuous
variables (e.g. age) and categorical data (e.g. gender) is a challenge shared by the two
works. After contrasting several techniques and evaluating the models’ effectiveness, the
paper concludes that although the trees’ results could be helpful, they were not to be

thought of as conclusive or consistently reliable.

“A Learning Health Care System Using Computer-Aided Diagnosis” discusses the
relevant topic of computer-aided diagnosing, and provides several useful insights into the
development of a system that can improve upon a physician’s accuracy in reaching a
conclusive diagnosis. After outlining several limitations of existing systems, Cahan and
Cimino (2017) introduce a theoretical framework for developing diagnosis support systems
in the future, and present schematics of proposed entity relationship models for such
systems. A particularly interesting insight is offered by the chart-like depiction of the
conceptual framework proposed (Diagram 1); the right half of the model describes likelihood
estimations, and is therefore closely related to our ultimate approach and the associated

prototype application we developed.

There is an increasing number of complicated medical tasks that intelligent systems
can carry out accurately. Very recently, the Machine Learning group at Stanford developed
CheXNet, which excels at specific medical tasks; for instance, it performed better than
medical experts in identifying pneumonia using chest X-Rays. However, the CheXNet

algorithm was trained using a large dataset of chest X-Rays accompanied by real ground-

truth labels, the actual diagnoses of the patients. On top of that, the level of specificity of
the particular problem definition is also helpful in limiting the parameters involved in the
proposed solution; a model to diagnose patients generally has to account for countless
more features. Expectedly, not many commercial software tools claim to be capable of
accurately diagnosing generic patients (i.e. have broad enough capabilities to lead to any

diagnosis); that is the ultimate goal of Pusztai and Howard.

Capture a structured patterned For each of the potential diseases,
patient presentation estimate the prior probability using
epidemiologic data and pattern

knowledgebase

Assess the match with known
diseases by comparing patterntoa

knowledgebase including multiple
patterns associated with diagnoses

Patternrecognition-based
differential diagnosis

Adjust priors by considering patient
demographics, comorbidities and
geotemporal data

Prior probability-based differential
diagnosis

Merged, ranked differential
diagnosis (scoring for pattern-
matching and prior probability)

Diagram 1: Conceptual framework for building computer-aided diagnosis systems. The rightmost half of the
diagram makes uses of prior probability distributions and patient information to estimate the likelihood of
encountering a disease in the given patient

As part of our preliminary research, we searched for and trialed relevant commercial
software applications available on the internet. iTriage is an iOS application that offers a
wide variety of medical information, including searching for hospitals and doctors,
symptoms, diseases, and medication. The user-interface is simple to use and provides
many additional capabilities, such as tracking one’s medical history and booking
appointments. We also considered Doctor Al, a recurrent neural network based self-
diagnosing project that utilizes real medical data and patient records collected over 8 years

to diagnose patients. Though this approach is closer to what we hoped to ultimately pursue,

the lack of a primary medical data source prevented us from attempting to train a complex

RNN model, as similar training data could not be obtained.

lll. Approach

A. Representation Models

10 — question

The first step to building a prototype was to establish a model for representing patients,
diseases, and symptoms, as well as all other relevant information that would traditionally
be provided by a patient. We begin by modelling a simple Triage interaction of a patient
with a doctor or nurse. We always assume that the patient’s principal symptom' is cough.

We first ask the patient for some general information, presented in Figure 1.

We then proceed to asking about symptoms associated with cough, similar to how a
nurse would in the context of Triage. For our simple model, we use 10 questions, shown in
Figure 2, and seek a Yes/No answer from the patient. We then attempt to estimate the
urgency of their present condition based on the observed symptoms and background data
provided. We used a simple Google Form to create around 20 test patients to be used for
training. Pusztai and Howard then labelled each patient case with a triage score on a scale
of 1 (no need for treatment) to 5 (ER emergency), providing our ground truth value.

Name Age Gender Body Temperature Regular Smoker?

Figure 1: General information in Triage scenario

Cough? Headache? Chills? Sore Throat? Vomitting? |Muscle Pain? Tiredness? Runny Nose? Heartburn? Chronic cough?

Figure 2: Symptoms related to cough in Triage scenario

We quickly refined the model to add several dimensions to the patients’ responses.

After consulting with the doctors, it was clear that more specific information on a patient’s

! Primary reason for seeking medical assistance

condition would be necessary to appropriately triage them. To that end, we added three

dimensions to each Yes/No answer; severity, trajectory, and continuity. For each of the

symptoms shown in Figure 2, three additional questions were asked, shown in Figure 3.

These are standard follow-up questions that should be asked for all symptoms; according

to the doctors, they provide information that’s valuable to evaluating a patient’s condition.

Responses to the first two questions need not in reality be categorical; however, for the

purposes of our model, we allowed a choice between three options: “Mild”, “Medium”, and

“Intense”, and “Better”, “Same”, and “Worse”, respectively.

100 — question

We moved on to adopting a more detailed model,

developed with the help of Pusztai and Howard, which uses 97

responses as model features for a given patient (dubbed the 100

— question model). The nature of these features is not limited to

symptom information, but also includes questions related to

background, family history, and social habits. Answers are once

Viral infection
Post-viral cough
Influenza

Pertussis
Pneumonia

TB

Bacterial sinusitis
Stable asthma
Asthma exacerbation
Stable COPD

COPD exacerbation

Figure 5: Diagnoses in
diagnosis scenario

again meant to be binary, but increasing
the feature space now enables us to pose
highly specific questions that include the

dimensions presented in Figure 3. A

How intense? Are these symptoms getting..? Chronic?
Figure 3: Additional model dimensions in Triage scenario

Female?

Exposure to allergen?
Exposure to irritant?
Occurs in the morning?
Worse when lying down?
Worse after exercise?
Recent abdominal surgery?
Non-smoker?

<20 pack years?

20 - 40 pack years?
Asbestos exposure?

Figure 4: Features in diagnosis
scenario

selected subset of these questions is shown in Figure 4.

Similarly, we increase the precision of our predictions; we abandon

the 0 — 5 scale and use a list of diseases as categorical outcomes of

the predicted output variable, the diagnosis.

Recall, we are

attempting to diagnose a patient, rather than to simply triage them.

Figure 5 displays some of the 23 diagnoses associated with the

principal symptom of cough in our final model.

B. Decision Tree Classifier

First, | implemented a Decision Tree classifier to triage patients from the 10 — question
model presented above. A tree was among the most appropriate machine learning
approaches available given our lack of sufficient data to train more complex models like
neural networks. Decision trees can be built with arbitrarily few data points, and have an

intuitive visual representation; they can also be easily refined or reconstructed.

After importing the model patient responses (which we created) into Python, some
data manipulation was required before building the classifier. Incomplete data had to be
identified and replaced with neutral values (mostly “No”s). Textual responses were
converted into categorical values (specifically integers) to be compatible with the classifier.
Finally, ground truth labels were imported and associated with each patient. After several
trials using tiny datasets we created, a typical decision tree produced by our approach
looked something like the tree depicted in the Figure 6. The sklearn Python module was

used for training; numpy and pandas were used for data manipulation.

The main limitation of this approach is that the model produced, though 100%
accurate on training data, may not learn to make decisions about important parameters.
Specifically, if the training data of the Decision Tree Classifier is not diverse, then the model
will not learn how to use features that are scarce in the training population, and therefore
will perform poorly on diverse testing datasets. Visualizing the DT below helps identify a
significant barrier; the vast parameter space of our model, in conjunction with the lack of
extensive and appropriately detailed training data, render any decision tree we produce of
little use. As we can see, the training data points are first split by body temperature, then
by intensity of cough; finally, some subset of the tree is further split by age. Other

parameters, including most all experienced symptoms, have not been learned on; in other

gini=0.0
samples = 1
value =[0,0,0, 1]

Body Temperature <= 0.5

gini =
samples = 10

value = [4,2, 3, 1]

0.7

"

Ealse

Cough<=1.0
gini = 0.625
samples = 4

value =[0,2,1,1]

Cough <=0.5
gini = 0.444
samples = 6

value = [4,0,2,0]

l

Age<=490

gini=0 444

samples =
value = [0, 2, l 0]

/N

'

gini =0.0
samples = 2
value = [0, 0,2, 0]

gini =0.0
samples = 4
value = [4, 0,0, 0]

gini =

samples = 2
value = [0, 2,0, 0]

gini =

0.0
samples = 1
value =[0,0, 1, 0]

Figure 6: A visualization of the learned decision tree model on our tiny dataset

words, our tree can classify all our made-up patients accurately without even considering

their symptoms. That is clearly a failure to build a model sensitive to all relevant parameters,

mostly stemming from the lack of adequate data discussed above.

C. Bayesian Network

My
Wang

teammates, Allen

and Irene Li,
explored other popular
techniques for building a
classification system,

most notably the
Bayesian Network model
for classification. In the
Bayesian Network,
patient data is used to
compute conditional
probabilities that relate

different parameters of

T

0.2

Smokes
F @
0.8

Lung Disease

T

Shortness

Figure 7: Simple Bayesian Network likelihood estimator

Chest Pain
of Breath Lung | cold T F Cod| T ‘
Lung T F Lung 1] F Disease
Disease Disease T T 10.7525/0.2475 T]0.307|0.693
T |0208(0792 T |0.208|0792 T F 0505|0495 F | 001|099
F |001 099 F] 001|099 F T |0505 |0.495
F F 0.01 | 0.99

the model with each other, as well as with the predicted output variable. Evidence about
the state of the system (i.e. the patient’s symptoms, background, family history, social habits
etc.) is then used to make predictions. Specifically, statistical tools such as likelihood
maximization are used to produce a probability distribution of the possible values of the
output variable, in our case the diagnosis. A visualization of a simple Bayesian network
demo performed on made-up data from out 10 — question model is shown in Figure 7.
Expectedly, the accuracy of the model is sensitive to the quality and quantity of data; once
again, the lack of a sufficiently large dataset of real patient information prevented us from

pursuing this solution further.

D. Maximum Likelihood Estimator

To overcome the difficulties encountered in training Decision Tree and Bayesian Network
classifiers, we had to consider approaches that did not require a large dataset of recorded
patient symptoms. As a result, we moved away from machine learning solutions, and
considered a probabilistic model that remedies the situation, allowing us to produce a much

more detailed and meaningful diagnosing prototype.

For the purposes of building a likelihood estimator, we developed and used the 100
— question model outlined earlier. Each principal symptom p; is associated with a vector of

questions q and a vector of diagnoses d. Moreover, each tuple (p;, q;,dy) is assigned a
likelihood value lpiajax € (0,), the likelihood that a patient with principal symptom p; and
an affirmative answer to g; is diagnosed with dy, relative to the entire pool of patients with

p;- To compute the relative likelihood of each dy for a given patient, we first produce vectors

4.4, Of likelihoods applicable to the patient, based on their responses to each question q;;
specifically, oide = lpajar if the patient answered “Yes” to q;; otherwise, gpae = 1.
gide = (Answer to q; is "Yes" ? lp,qj,dk : 1)

We then define the likelihood of some diagnosis d, for the given patient as follows:

_ 1
lik(dy) = ST . 0 1_[Tq; de

10

In other words, given a relative likelihood table [, and a list of patient answers (evidence
observed), we consider the product of the applicable likelihoods for each diagnosis, and
normalize by the sum of such likelihood estimations for all diagnoses. We defined the result
to be the relative likelihood of the given patient to suffer from d,., given his principal symptom

p; and his responses to each question q;.

The rationale behind building a likelihood estimator was that statistical information
about the demographics, symptoms, background and social history of populations
diagnosed with the same condition, is generally available by a variety of medical sources.
Moreover, such statistics have been recorded for years, so their validity can be cross -
checked and evaluated. There is little ambiguity in interpreting the data; for instance, “how
much more likely than a random individual is it for a smoker to be diagnosed with lung
cancer?” is a clear question with a single numerical answer. In addition, such statistical
information can be approximated by a doctor’s expertise. Therefore, in the absence of
recorded data, or for testing model variability, a physician can use their knowledge and
experience to estimate such relative likelihood values. In fact, that is the case with the
“cough” likelihoods table; the likelihood values encoding the relationship between questions
and diagnoses in our final model were produced by Howard. Of course, meticulous research
performed by a physician could gather more accurate likelihood estimations. Therefore,

given enough time and sources, the model can be refined and improved indefinitely.

The limitations of this model are clear. The approach requires us to make several
assumptions; first, we assume that listing all possible diagnoses associated with a principal
symptom is feasible, which is not realistically the case. The same is applicable to questions
a patient is asked; even the 100 — question model doesn’t come close to exhausting the
potentially relevant questions a real-life patient could be asked by a physician, and that’s
only for the simplified problem of diagnosing cough. In addition, the model fails to consider
connections between answers to different questions, i.e. conditional likelihoods that may
affect the resulting calculation significantly. For instance, the answer to “how much more

likely than a random individual is it for a smoker to be diagnosed with lung cancer?” could

11

differ significantly based on the gender of the examined patient; such insights are not
captured by the current approach, and could only be incorporated by adding features

(questions) with higher specificity to the model, along with their conditional likelihoods.

Another limitation of such a probabilistic solution is that is doesn’t encode any
qualitative expertise that is useful to efficiently arriving at an accurate diagnosis. As we
learned by studying exiting algorithms for triaging patients, different answers to specific
questions often affect the sequence of questioning a doctor would perform, triggering
relevant follow-ups and or necessary clarifications. Such patterns can’t be learned by a
probabilistic model, which implies that the questioning process will likely be slower and less
efficient, occasionally posing unrelated questions, or failing to ask conditionally relevant
ones. Though the described qualitative knowledge can be approximated by manually
designing a conditional question sequence on the patient-facing side of the system,
attempting to do so would be tedious and likely really hard, as the possible scenarios

increase exponentially with the number of questions asked and answers allowed.

V. Web Application

The prototype application we produced was designed to be simple, extensible, and robust.
It follows a traditional 3-tier architecture, outlined in Diagram 2 below.

nders Vie

ponds to
— —
eracts wit ds Reque:

Diagram 2: Three-tier architecture paradigm in our prototype application

12

The application is based on the probabilistic model discussed in 1lI(D), and was designed
to be lightweight, user-friendly, and easily extensible. The following table outlines the
requirements of the prototype application, as they were discussed and revisited through

meetings with Pusztai and Howard, and our individual contributions to development:

ID [Description Priority | State Contributors
1 | Web application easily accessible over the web Must Complete | Allen,
Stelios

2 | Entity representation adapted for efficient database | Must Complete | Allen,
storage and retrieval (using SQLite) Stelios

3 | Robust server functionality that performs calculations | Must Complete | Stelios
and returns results efficiently

4 | Client-facing service for patient self-diagnosing; user- | Must Complete | Allen
friendly interface, comprehensive questions

5 | Display comprehensive diagnosis results to patient, | Must Complete | Stelios
along with corresponding calculated probabilities

6 | Ability to register and log users in with personal | Should | Complete | Stelios
credentials

7 | Ability to remember previous diagnoses of returning | Should | Complete | Allen
users; history available to display

8 | Doctor-facing interface for refining or adding to the | Should | Complete | Allen
existing model

9 [Modular code design to facilitate future maintenance | Should | Complete | Allen,

and extensibility Stelios
10 | Application deployment Must Complete | Allen,
Stelios

Database

We store all data in a local database file named triage.db. We use SQLite to avoid the
added complexity of relying on a SQL server, and to ensure the application is versatile,
easily deployable and environment-independent. | devised a data storage scheme that

allows for maximal flexibility in designing a database APl and manipulating data, while

13

eliminating data repetition. Specifically, tables principals, diagnoses, and questions, hold
the textual values of all principal symptoms, potential diagnoses, and diagnostic questions
respectively, and map them to a unique integer value for easy reference and manipulation.
The schema for the three tables is shown in Figure 8. The likelihoods table then maps

likelihood tuples bpoa;di (see Section ll) to likelihood values in a simple schema shown in

Figure 9. This design minimizes data duplication, and allows for efficient data retrieval.

Field Type Not NULL Primary Key

id INTEGER Yes Yes

name TEXT Yes No

Figure 8: Structure of principals, diagnoses, and questions tables

Field Type Not NULL Primary Key
principal INTEGER Yes Yes
diagnosis INTEGER Yes Yes
question INTEGER Yes Yes
likelihood = REAL Yes No

Figure 9: Structure of tuple-to-likelihood mapping in likelihoods table

To allow users to maintain an account on our application, we created the table users, to
store a (unique) username, hashed password, and quality (patient/doctor) for each
registered user (see Figure 10). We also maintain the history of diagnoses performed by
each user using 3 tables, history, patient_input, and patient_results; this design (see Figure
11) ensures we can efficiently store an arbitrary amount of provided answers and produced

diagnoses for each patient, once again minimizing data repetition.

Field Type Not NULL Primary Key
id INTEGER Yes Yes
username TEXT Yes No

hash TEXT Yes No

doctor BOOLEAN Yes No

Figure 10: Structure of users table
The design of the database tables is an important element of the prototype
application. With the proposed schemas, it becomes easy to add new data (including users,
principals, diagnoses, questions, and likelihoods) as well as to represent relationships

between them (e.g. add new lbpapa >V E (0, 0) mappings). As such, the model is not

14

Field Type Not NULL Primary Key

id INTEGER Yes Yes
user_id INTEGER No No
Erinciial_id INTEGER No No
history INTEGER No No
question INTEGER No No
resEonse INTEGER No No
history INTEGER No No
diagnosis_id INTEGER No No
diagnosis_name TEXT No No
probability REAL No No

Figure 11: Structure of history, patient_input, and patient_results tables respectively

limited to the data it currently contains. It can be refined indefinitely by improving likelihood

mappings, adding new (and more specific) questions, enriching the list of diagnoses, etc.

Back-end (server)

My work focused on the database schema (detailed above) and the design and
development of the server functionality. Python was chosen for our server because of the
wide variety of data manipulation, server framework, and database libraries available in the
particular language. We used F/ask,2 a Python server micro-framework, as our server’s

particularly lightweight backbone.

For communication with the database, | developed a simple SQLite API for retrieving
and modifying data in the SQL tables (found on the bottom of application.py). We broke
down the server functionality into simple endpoints, and separated model logic from server

functionality by maintaining distinct “method” and “endpoint” sections in the code. The all-

? http://flask.pocoo.org/

15

around modularity of the code offers significant flexibility in factoring-out and reusing parts

of it, while ensuring that potential future enhancements are straightforward to perform.

Front-end (client)

The client-facing part of the prototype (front-end) was developed by my partner, Allen
Wang. HTML and CSS, as well as the templating language Jinja were used for webpage
rendering.® The client’s two main components are the patient-facing and doctor-facing
interfaces. The “Diagnose” interface can be used by both types of users to self-diagnose
and produce likelihood estimations for the available diseases; in addition, doctor accounts
can refine the stored data model by editing existing likelihood mappings, as well as adding
options to the principals, diagnoses, and questions tables. Data validation is also performed
in the front-end using Javascript, ensuring fault-tolerance while eliminating the need for

unnecessary communication with the server.

Screenshots of the final product are presented on the next page. Figure 12 depicts
the results page (where the probability distribution over potential diagnoses is displayed)
after the patient has responded to all questions and the likelihood calculations have been
performed. The history feature of our prototype is displayed in Figure 13, while one aspect
of the doctor-facing interface that allows for modifications of the existing model (in this case,

editing likelihood mappings) is shown in Figure 14.

Plan for deployment

We plan to deploy the application in December 2017, likely on Heroku or a similar cloud

platform. For development and testing, a workspace on the Cloud9 IDE was used (c9.i0).

3 http://jinja.pocoo.org/

16

Patient Triage Prototype piagnose Add Likelihoods Log Out

Viral infection with probability 9.95
Post-viral cough with probability 24.87
Pneumonia with probability 7.46

Pulmonary embolism with probability 12.44

Patient Triage Prototype piagnose Add Likelihoods Log Out

Viral infection with probability 80.96

Figure 12: Examples of inconclusive (top) and conclusive (bottom) diagnostic results produced by
the prototype application, in the form of percentage likelihoods of particular diagnoses

Patient Triage Prototype Diagnose Add Likelihoods Log Out

Welcome allen

Your Triage History
2017-12-12: cough
2017-12-14: cough
2017-12-14: TestPrincipal

«

Figure 13: Screenshot of user history feature, whereby a registered user can revisit past results

Patient Triage Prototype piagnose Add Likelihoods Log Out
Viral infection Post-viral cough Influenza Pertussis Pneumonia
<40 1 1 1 1 1
40 - 50 1 1 1 1 1
50 - 60 1 1 2.0 1 2.0
60 - 80 1 1 5.0 1 5.0
>80 1 1 10.0 1 10.0
Gender (if female) 1 1 1 1 1
Ethnicity 1 1 1 1 1
Not influenza 1 1 0.001 1 1
season
Sick contact 2.0 2.0 1 1 1
'Contact with 1 1 5.0 1 1
influenza
Contact with
ontact wi 1 1 1 5.0 1

pertussis

Figure 14: Screenshot of the doctor-facing interface for modifying likelihood values in the model

17

V. Future Work & Conclusions

Lacking relevant testing data and objective truth labels to use in evaluating our
prototype on, we are required to perform manual tests and consider the produced results
individually. In 10 trial runs, the application returned reasonable results, according to our
test subjects and the doctors; on one occasion, it successfully diagnosed Professor Radev’s
viral infection (with an estimated probability > 80%), while in another, it produced multiple
results (a probability distribution) that Pusztai and Howard deemed as “very reasonable

suggestions”.

The most important outcomes of this project are the conclusions we can draw about
the nature of the problem at hand, and the suggestions we can make regarding pursuing
the next stages of this long-term effort. Indeed, the different techniques we experimented
with, though often unsuccessful, led us to define the problem much more precisely; identify
many of the potentially infinite parameters involved; acquire a much better understanding
of the requirements of a feasible solution; and take the first step toward the ultimate goal of

building a complicated model for general self-diagnosis.

The main limitations of the current approach are detailed in section 1l1(D). However,
improvements to the model can also be proposed. Via meticulous collection of evidence, a
more accurate likelihood estimator can be built. If rigorous statistical results eventually
replace the doctors’ rough approximations of likelihood values, the model will likely provide
better estimates of the posterior probability of each diagnoses for a given patient. We can
also envision the model accounting for conditional probabilities, combining existing
guestions with relevant information such as place of origin, genetics, and other factors that
may alter likelihood values significantly, to potentially improve results. With that in mind, a
user-friendly interface was created to facilitate modifications to the model, while eliminating
the need for the doctors to ever interact with the database or the code directly. By adding

questions with higher specificity, the precision of the likelihood estimator can be improved.

18

In planning next steps and moving the project forward, we strongly advised Pusztai
and Howard to pursue access to real-life patient and diagnostic data. A good dataset will
allow for the development of a more complex model, presumably based on some Recurrent
Neural Network architecture. Two sources the doctors are currently considering are
handwritten reports from patient examinations, and electronically submitted forms of
background and symptom information from patient visits to a hospital. The former approach
poses an interesting NLP challenge, and has the advantage of virtually unlimited availability
of training data. The latter approach is more convenient in that the data is electronically
stored, and therefore more easily parsed; in addition, data points and information collected
will be much more standardized in the case of electronic forms than in that of doctors’
individual notes. In either case, models based on real patient diagnoses will not only be
able to extract patterns that may even be foreign to doctors, but will also automatically learn
to simulate doctor — patient interactions more effectively. Such models may also leverage
continuity, making use of previous diagnoses (and related statistical observations) to better

estimate likelihoods.

VI. Acknowledgements

This project was worked on by myself, Stylianos Rousoglou, in conjunction with Allen Wang
(Yale '18) and Irene Li (Yale CS PhD Candidate), under the supervision of Professor
Dragomir Radev. | would like to thank Allen and Irene for a great semester, as well as
Professor Radev for his encouragement, guidance, and continued support. Special thanks
to Lajos Pusztai and Fred Howard of the Yale School of Medicine for sharing with us their

vision and medical expertise, and devoting time and energy to this project.

19

VII. References
"About ltriage - Itriagehq". 2017. ltriagehq. http://about.itriagehealth.com/.

Cahan, Amos, and James J Cimino. (2017). "A Learning Health Care System Using
Computer-Aided Diagnosis". Journal Of Medical Internet Research 19 (3): e54.
doi:10.2196/jmir.6663.

Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F. & Sun, J.. (2016). Doctor Al:
Predicting Clinical Events via Recurrent Neural Networks. Proceedings of the 1%
Machine Learning for Healthcare Conference, in PMLR 56:301-318

Langarizadeh M, Moghbeli F. Applying Naive Bayesian Networks to Disease Prediction: a
Systematic Review. Acta Informatica Medica. 2016; 24(5):364-369.
doi:10.5455/aim.2016.24.364-369.

Rajpurkar, Pranav, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan,
and Daisy Ding et al. 2017. "Chexnet: Radiologist-Level Pneumonia Detection On
Chest X-Rays With Deep Learning". doi:1711.05225v2.

Sadeghi Sarmad, Afsaneh Barzi, Navid Sadeghi, and Brent King. 2006. "A Bayesian Model
For Triage Decision Support". International Journal Of Medical Informatics 75 (5): 403-
411. doi:10.1016/j.ijmedinf.2005.07.028.

Seixas, Flavio Luiz, Bianca Zadrozny, Jerson Laks, Aura Conci, and Débora Christina
Muchaluat Saade. 2014. "A Bayesian Network Decision Model For Supporting The
Diagnosis Of Dementia, Alzheimer'S Disease And Mild Cognitive
Impairment”. Computers In Biology @ And Medicine 51: 140-158.
doi:10.1016/j.compbiomed.2014.04.010.

Song, Yan-yan, and Ying Lu. “Decision Tree Methods: Applications for Classification
and Prediction.” Shanghai Archives of Psychiatry 27.2 (2015): 130-135. PMC.
doi:10.11919/j.issn.1002-0829.215044.

Venkatasubramaniam, Ashwini, Julian Wolfson, Nathan Mitchell, Timothy Barnes, Meghan
JaKa, and Simone French. 2017. "Decision Trees In Epidemiological
Research". Emerging Themes In Epidemiology 14 (1). doi:10.1186/s12982-017-0064-
4,

20

