Research Grant and Fund Management
System

Web-Based Research Department Data Management System

Team 49
Allen Wang Stylianos Rousoglou

COMP103P Object-Oriented Programming
April 26, 2017

This report is submitted as part requirement for the undergraduate degree at UCL. It is
substantially the result of my own work except where explicitly indicated in the text. The report
may be freely copied and distributed provided the source is explicitly acknowledged.

Department of Computer Science
University College London

Abstract

The Research Grant and Fund Management System is a web-based database
application designed for the University College London’s Research Services
Department. It was developed by team members Allen Wang and Stylianos
Rousoglou as a client project for the module COMP 103P - Object-Oriented
Programming. The team worked in tandem with UCL Assistant Director of
Research Services, Mark Burgess.

Mr. Burgess required a new system to manage the Research Service Department’s
information on individual students and research award allocations. The old
management system was both confusing and complicated; all the research award
information on allocations and students were stored in hundreds of excel sheets
lacking data normality. Managing all this information was both slow and prone
to data-integrity errors. The main issues that needed to be addressed were
improving efficiency in accessing data, adding data, and maintaining data.

The team moved away from the cumbersome realm of excel sheets and
implemented a web application that migrated data from excel into a database
management system. The technologies used were HTML and JavaScript on the
client side, NodeJS on the server side, and MySQL for the database. The front-
end was implemented with consideration to client specifications, while the server
and database schema were designed and developed entirely by the team members.

Since the long-term vision of the client requires UCL systems integration for user
access and security reasons, the team focused primarily on developing a working
proof of concept for the client. With a friendly user-interface and all functional
requirements satisfied, the completed project allows the client to demonstrate the
benefits of such a system in hopes of receiving the necessary resources and
approval to move onto full integration with UCL systems.

Table of Contents

F N 11 1 T N 2
Table of CONtENTS....ccciiiiiiiiiiiiiiiiiiiiii et s ssssssssesseeeeeanes 3
List of Tables and Figures........cccvviiiiiiiiimuiiiiiiiiiiiiiiiiiiiiissss. 5
1 INErodUCHION ..ccevveieeiiiiiiiiiiiiiiiiiiiiiiinecteerereeeeeee s s s s s e s e e e e e e e e e e s s s s sssssssssssssssssaasnnns 6
1.1 Background and Problem Statement..........ccceveiiiiiiiiiiiinniiiiiniiisnn, 6
1.1.1 Client and project background..........cceecueeiriiiiiiiieeiiiee et saeee s 6

| O © 10 14§33 TSI o3 o) (0[S RSO PP PSR 7

1.2 APProach to Project......ccciiiiiiiiuuiiiiiiiiiiiiiiiiiiiniiiiiisiinensssssssiessssssssseenne 7
1.3 The Development TeaAmcciiiiiiiiruiiiiiiiiiiiiriiisiirrsssssss s 8
1.3.1 Background of Team MEMDETIScccceiiriiiiiriiireiiiee it esiee et siee e sieeesaeeesaeessaeeesnes 8

1.3.2 Individual Team Member ROIESccceerviiiriiriiiiiiiiiceeie et 8

N T 111) 117 1 9
2.1 Gathering RequUirementsccvveuiiiiiiiiiiininiiiiiiiiiiisssessssss. 9
2.2 g3 Y1) 1 9
2.3 MOSCOW ReqQUIrEmMENTSceiiiiiiiimnueiiiiniiiiiiesusiiiiiiiiiiimmssssiiimrssssiisss 9
24 USE CASES coviiiiiiiiiiiiiiiiiiiiiiiiiiiiiis s e ssssssnes 10

R o] T 1] | N 11
3.1 Related Projects.......ccuvuuviiiiiiiiiiinminiiiiiiiiiiiiiiiiissssissssssssssns 11
3.2 Front-Endccoovvviiiiiiiiiiiiiiiissseees 12
3201 REACE ittt e e e s e 12
TR N 1 V4§ 1 - PSR RPPTR TP 12
3.2.3 Front-ENd CROICEeoiuiiiiiiiiiiiiesiic ettt et e 13

33 Back-Endccoovviiiiiiiiiiiiiiiiiiiiii e 13
3301 JAVA it e e s 13
3.3.2 0 NOAEIS ettt st sh e st r e s aeeenees 13
3.3.3 BACK-ENd ChOICE ...cctiiiiiiiiieiiieeieesiee ettt s ettt 13

4 Design and Implementation.........ccceeueiiiiiiimmnniiiiiiiiiniiiiie. 14
4.1) LT 1 14
41,1 USEE INEEITACE cuveeiiieieeiiie ettt st ettt sb e st e b e e b e 14
4.1.2 SyStem ATCHITECTUIE ..eevuieeiiiiieiiieeeiieeesteesite ettt esiee e st e e s rtee e sbeeesbaeesbeeesbeeesnbaessseeenn 15
O T T (1Y, 1 o TSRS PPRUUPRPR 18
4.1.4 APPLCAION SIUCTUIE . ..euvveeirireeiiieeeiieeesieesrieeeestteessteeessteeessteeesbeeessaeesseeesnsseessaessnseeens 19
4.1.5 DeSIZN PAtteINS ..uveeiiiiiiiiieiiieeeiieeesiee ettt estte e ettt e stte e sateesbaeesbeeesteeessbeeesneeesnbaessseeenns 19

4.2 Implementation........ccuvuuuiiiiiiiiiiiiiniiiiiiinii s saas s 21
4.2.1 DevelopmeEnt TOOIS.....cciiuiririiriiieeiiieeeiieeesiieeesteessteeesstteessteeessbeeestaeesseeesseeessaesssseeens 21
4.2.2 Front End IMplementationcceeerveririeeirieeinieesieeessiieessieeesieeeseneesnnessnsseessessssseeenns 22
4.2.3 Back End ImMplementationccceerveeirieeiiieeenieesiieessieeessieeessieeeseeeessnesssneesssessssseeenns 23
4.2.4 Key Functionality Implementationcccccuererieeriieeinieeiiieesiieesieeesieeesaeeesseesssneeenns 23
4.2.5 Data Storage (JSON) and database........ccceeeverrriiiriieeiiieeniieesiiee e sieeesieeesreeessaeee e 24
4.2.6 PACKAZE TICC veeevuveeiiiieeiieeeiiee et ettt e ettt e sttt e sttt estteesateesbaeesbteesabaeesnseeesnseeesntaeesseeenns 25
4.2.7 Project ManagemeENtcccerueeerueeirreeenieeesiieessiteessseeessseeessseessssseesssseessssesssseessssassssseessns 25

xS] 5 ¥ 27

6 Conclusion & Future Work.......cccccceiiiiinieenniccinneennnnen. Error! Bookmark not defined.
References — need to format this and citations.........c.ccceiiiieniiiienciiiiiniiiinnnnn.. 34
L 8 01 1 s N 35
A. System Manual — basically how to contribute. Same as the example web database report
ON MOOAIE...ccuuiiiiieiiiiiieiiiiineiiritresirienesisiennssisteenssssseansssssasnsssssennes Error! Bookmark not defined.
B. User Manual — SAIMEccvuiiiiuiiinniinniiiiiiiensieiiiimiirmiiasississsisnsiesssrsssrssssassssansssses 35
C. Deployment Manual — Can you add the node shit...........ccovrrrrreiiiiiiiiiiiiniciiiiiiiniinnnennee. 35
| D JOR O s T @ 1721 s (1) 1 PR 36
E. Client FEedbDacKccivvuuiiiiieiiiiiiniiiiiiniiiiieeiiiieniiiienesiiemissiissssismsssssssssssssssnssssssensssss 37
F. Key Screenshotscccccceiiiiiiiiiiiiiiiiiiiiiiiniiiiiiieiisssssinesssssssssisesssssssssssssses 38
G. Bi-WeeKly RePOItS..cccuciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiininisiiisssnnsssssssssisssinessssssssssssssssses 43

List of Tables and Figures

1 Introduction

1.1 Background and Problem Statement

1.1.1 Client and project background

University College London is one of the world’s premier research
institutions. Faculty and PhD students undertake various research projects that
push the boundaries of medicine, life sciences, computer science, and the
humanities [1]. A large portion of UCL’s research is funded by the Research
Councils UK (RCUK). RCUK is a strategic partnership of the UK’s seven
Research Councils and UCL is one of its primary beneficiaries in receiving
funding awards [2]. These awards are broken down into one or many project
allocations for the duration of the award. Since UCL has over 270 million pounds
in RCUK funding, tracking the partitioning of an award among projects and its
students and faculty supervisors is imperative. Research Services must know
where each award is being used, and when applicable, make use of available extra
funding to allow for more projects to be funded. Many years ago, the RCUK
managed the information on all its research grants and allocations. However, as
the funding amount increased and grew too large for one organization to handle,
the responsibility of managing the research grant information was passed on to
the individual recipient institutions, such as UCL. Given the large magnitude and
importance of the work of UCL Research Services, it is both archaic and
inefficient to store all the information in hundreds of excel sheets.

The data management difficulties of having to sift through these sheets to
simply find or add records was the primary reason Mr. Burgess requested a better
solution from our team. Another impetus was being able to promote more
research opportunities for various departments; under the previous data
management system, Mr. Burgess and his department would have to take in all
requests for whether there was available funding. He desired a transparent system
where individual UCL departments could view all the awards and allocations,
thus giving them all the information on whether proposed projects could be
funded. This would eliminate the possibility of planning a project but
consequently finding out from Mr. Burgess that there were insufficient funds. He
also envisioned more interdisciplinary projects flourishing as multiple
departments could view the allocation of research grant funding, and propose
joint cross-department projects and open new avenues for discovery.

1.1.2 Outline of project

The Research Grant and Fund Management System is a web based
information management system. Its primary objective was aimed at improving
the work flow and efficiency for the client, Mr. Burgess, and his colleagues
(defined as primary users) in managing the large amount of data pertaining to
UCL’s research grants and project information. An integral part of this is the
front-end web user interface; the primary users can search for records pertaining
to awards, allocations, students, or collaborators. Since each entry of one category
is related to other categories, the web application provides a detailed view of each
entry that also has quick-links to related queries. Consequently, a primary user
viewing a detailed allocation is only one click away from querying for all the
students associated with that project allocation. These improvements to the
primary user workflow are all supplemental to the main increase in efficiency:
having all the excel sheets stored into a database that is maintained by a NodelS
server. Eliminating the cumbersome process of looking at individual excel sheets
streamlines the look-up time greatly for the client.

The capabilities listed above are also available for users from outside the
client’s research department. These secondary users would be faculty and
students looking to propose potential projects. Providing them a transparent view
of the available funding and current awards satisfies the client’s long term vision
of fully utilizing all available funds by promoting research opportunities.
Adding, removing, and updating entries in the database are capabilities restricted
from secondary users but available to primary users. For the project’s purposes,
a toggle button was used to switch between these two privileges. The user
interface for secondary users simply hides the fields for adding, removing, and
updating. Moving forwards, integrating with UCL users and granting permissions
based on UCL identification would simply replace the current project’s toggle
button; users could be added to a primary user list and granted access to these
features.

1.2 Approach to Project

Both team members worked tirelessly and efficiently to produce a
functioning proof of concept in a condensed timeframe to overcome a 2-week
initial delay in pairing with the client and receiving the initial project briefing.
The first weeks of development consisted of client meetings to gather
requirements as well as design a solution. After deciding on a database web
application, the team focused on research to determine the technologies needed.
During this phase, the team went through iterative database design as well as
rapid learning of new technologies. After migrating excel sheets into the database,
the back-end server was developed to manage the database while the front end

was created based off client feedback on user interface sketches. Although the
front end and back end were developed by different developers, they were very
much engineered in tandem because of many use cases and requirements involved
multiple communications between the front and back end. This integrated
development resulted in a web based application satisfying the client’s
requirements.

1.3 The Development Team

1.3.1 Background of Team Members

The team consisted of two members: Allen Wang and Stylianos Rousoglou.
Both were third-year computer science students from the United States studying
at UCL for the spring 2017 term as affiliate students.

Stylianos, known to his peers as Stelios, has an avid passion for computer
science, having previously served as a course instructor and worked as a NodeJS
developer. His familiarity with NodeJS made him an excellent and efficient back
end developer for the project. He is originally from Athens, Greece and is an avid
fan of Coldplay and The Killers.

Allen started his university studies far from computer science. Two years
later, he is glad to have switched into a challenging and rewarding field. He
previously worked as a web developer and this experience helped him in his role
as a front-end developer for this project. He hails from Michigan, the motor-city
area and is a big football fan.

1.3.2 Individual Team Member Roles

Both team members contributed to all facets of the project. Despite Allen
being the front-end developer and Stelios being responsible for the back-end, they
both worked with each other to give feedback and contribute in all areas of the
project. The general responsibilities were outlined as follows:

Name Roles

Allen Wang UI Designer, Front End Developer, Client Liaison, Tester

Stylianos Rousoglou Back-End Developer, Researcher, Report Editor, Tester

Table 1.1 — Team Roles

2 Requirements

2.1 Gathering Requirements

The first few weeks consisted of multiple meetings between the team and
client to review and revise requirements. The feasibility and constraints of such
requirements naturally formed as the scope of the project was finalized. With the
feedback of the client, the team could categorize the requirements based on
importance. User empathy played a vital role in the process, as the team was
brought into the client’s office and went through the workflow of the previous
system to fully understand the limitations in fulfilling the various and necessary
use-cases. The biggest necessity was a faster way of looking up information and
a cleaner data management system.

The client and team came up with four “external portfolio views” to
categorize the database information queries into: awards, allocations, students,
and collaborators. By following this principle, the client also had a template to
normalize the existing excel sheets, in which multiple awards could have different
data columns. By cleaning up the data as well as further understanding the areas
of improvement to the primary user workflow, the team aligned the requirements
as closely as possible with the client’s vision.

2.2 Persona

As previously mentioned, the application has two different types of users.
The first, known as the primary user, consists of the client and his colleagues in
UCL Research Services. They needed to be able to perform all possible
operations on the migrated research grant data. These include conducting search
queries, adding new entries, updating fields in existing entries, and removing
entries.

The secondary user consists of faculty and students from departments
within UCL seeking to view the funding distribution. They could be looking for
available funding to use towards a new proposed project.

2.3 MoSCoW Requirements

The following requirements were the result of client feedback and approval.
The first contributor listed was responsible for the 50% or more of the
requirement implementation.

ID | Description Priority | State Contributors

1 | The new system is to manage the information from | Must Complete | Stelios,
the current system’s hundreds of spreadsheets. Allen

After migration into a database, the system must
also support adding, updating, and removing
entries.

2 |[Users can conduct different searches wusing | Must Complete | Allen,

different parameters to obtain a result-set for Stelios
award, allocation, student, and collaborator
information.

3 | Client department users can update a notes section | Must Complete | Allen,
for each award, allocation, student, and Stelios
collaborator row, providing a form of version
control and logging/consistency.

4 | Completed grants should be still recorded and | Should | Complete | Stelios,
searchable, per UCL guidelines in retaining Allen
records

5 | Users have different privileges, managed by the | Should [Complete | Allen,
client’s department. Primary users have read/write Stelios
access, secondary users only allowed to read.

6 | For improved workflow, detailed results for data | Could [Complete | Allen,
entries should have hyperlinks to related queries of Stelios
different search categories (award -> allocation ->
student -> collaborator).

6 | The system supports integration with portico/UCL | Won’t [N/A N/A
since UCL owns the information - data integrity

7 | The system currently supports all of the RCUK [Won’t [N/A N/A
grants, and eventually collaborators from external
parties will be added to the system.

Table 2.1 — MoSCoW Requirements

2.4 Use Cases

The following lists the use cases developed by the team and client, with primary
or secondary-specific cases noted.

ID Description User
Note

1 Add research grant data Primary

2 Update existing data Primary

3 Remove data Primary

4 Search for awards, allocations, students, and collaborators Both

10

5 View a detailed entry from a list of query results Both

6 Both

Table 2.2 — Use Cases

Click to a related query search from a detailed entry view

3 Research

Most the first few weeks of the project focused on research. Both Stelios and
Allen looked at various frameworks, technologies, and strategies to implement
the application. Similar projects were examined to find similarities and useful
guidance. The entire stack of development was also critically examined as the
team considered multiple options and weighed the costs and benefits of each
individual component in the stack and how it fit into the entire application’s
development.

3.1 Related Projects

The team considered two of the most highly rated software systems online
that seemed to address the client’s needs. A cost-benefit analysis was conducted
and several features from each solution were considered and used as inspiration
for the eventual application.

Name Description Benefits Drawbacks Evaluation

Traverse by | “Traverse Free Trial Costs money|Although this

Kaseya proactively after the freelsoftware is extremely|
identifies data [Unmatched trial powerful and contains
center and |horizontal scaling most of the
networking issues Abundant functionality needed,

before they impact
service levels,
while providing
you the flexibility
to customize the
system for your
particular business
needs.”

Cloud computing
Data visualization
Integrated database

optimization for
bottlenecks

features surplus
to core client]
requirements

it does not make sense
to spend resources for|
a subscription when|
the core
functionalities needed
are basic enough to
implement.

11

Teamdesk [Custom database |[Flexible custom(No mention of|A lower level solution|
creation and |database creation [visualization [compared to Kaseya,
management this software is closer|
software for all |Secure cloud servers [No demo orjto the client’s goal but
users of all free trial periodhaving to pay for aj
technical 99.96% uptime proof of concept is not
backgrounds. ideal

Unlimited storage
space

Table 3.1 — Related Projects Analysis

3.2 Front-End

The team initially considered using popular frameworks like React or Angular
for the client-side interface.

3.2.1 React

For React, the team was intrigued at learning this new technology and
gaining experience with its component-based interface design. As well as being
able to perform on the front end, React could also operate on the back end[3].
However, what ultimately prevented the team from using React was its role as
only being a view layer, and its relatively steep learning curve [4]. The team’s
front end developer had limited JavaScript experience, and with a shortened
timeline due to the delayed client-team matching, the team did not think the
extensive time needed for ramping up on React would be worth its improved UI
experience. As the client and team concluded, the most important thing was
functionality in creating a data management system, with a clean user interface
sufficing.

3.2.2 Angular

As for Angular, it would have provided benefits like those of React. Itis a
highly modular framework and would promote rich client-side interaction, as well
as being more than just a view layer like React [5]. Angular is better equipped for
serving as a Model-View Controller (MVC) which was crucial for the application
since communication between the client and server was frequent [6]. However,
the need to support frequent client-server interaction ultimately led to rejecting
Angular simply because of the difficulty of understanding Angular code for
unfamiliar developers.

12

3.2.3 Front-End Choice

Since the front-end and back-end development was very integrated, it would have
proved a challenge for the back-end developer to understand the Angular front-
end. It was then decided to use vanilla JavaScript with jQuery when necessary.

3.3 Back-End

Whereas the team approached front-end technologies with less familiarity,
Stelios’ previous experience with NodeJS made the back-end choice a lot clearer.
Nevertheless, the team met with UCL’s IT department to factor in the long-term
implementation and scalability into the current choice of technology. The limited
debate was between NodeJS and Java as the server-side platform.

3.3.1 Java

Using Java presented a set of benefits that were initially unexpected. The
module for which this project was built towards had already presented Java to the
team members, so familiarity was a plus. Upon meeting with UCL IT services,
the team was informed that Java as a server-side technology would integrate
seamlessly into using UCL services and authentication later. However, this would
restrict the team to using UCL’s older technology stack and limit its database and
front end options. Therefore, Java was quickly ruled out as a contender.

3.3.2 NodelJS

Node’s widespread use and extensive array of open source libraries made
it the ideal choice. Along with Stelios’ previous experience as a Node developer,
Node also offered an easy mysql API library, Express for essential web
application features, and the added benefit of being a lightweight server with the
key feature of asynchronous communication. Allen also found it easier to pick up
on Node’s core features, such as promises and callbacks, making collaboration
and feedback in the back-end environment smooth and efficient.

3.3.3 Back-End Choice

Unlike the deliberation of front-end technologies, where each had both
advantages and slight disadvantages, on the back-end it was clear that NodeJS
would give the team the most flexibility. Adding to the fact that the client desired
a working proof of concept in which long term compatibility with UCL was not
the most immediate concern, using Java could not compare to the efficient and
lightweight asynchronous 1/0O of a NodeJS server. Node’s mysql package also
made it ideal since MySQL was the clear-cut choice as the database for the
application.

13

4 Design and Implementation

4.1 Design

The user interface, system architecture, and overall application structure was
designed with continued emphasis on the requirements and use cases for the
primary and secondary users.

4.1.1 User Interface

The User Interface was sketched out with a simple template on Powerpoint. The
interactive feedback and iteration between client and team led to developing a
simple navigation bar that led to the four different query types.

Awards Allocation Students Collaborators

Search Search Search Search
Add Add Add Add
Update Update Update Update

Figure 4.1 — Ul Wireframe

At the same time, the team designed extra enhancements to the User Interface
that were well accepted by the client. These include a dynamic detailed view of a
data entry, with certain fields containing hyperlinks to the related queries
pertaining to this certain data entry.

14

Allocations w Collaborators

Search Results Click on a row to show the detailed view.
Detailed View Related quick-search links to the other table views as well as update.
From Award: -> Allocation (myfinance_award_number and funding_body_reference)
From Allocation: -> Award (myfinance_award_number)

-> Student (myfinance_code)

From Student: -> Allocation (myfinance_code)
-> Collaborator (collaborator_code)

From Collaborator: -> Student (myfinance_code)

All Rights ~ Limited

funding_body_name BBSRC award_type Doctoral Training Grant - Dr. Rebecca Shipley
(Mechanical Eng)

award_name Cell Reproduction

principal_investigator Prof. Rebecca Shipley
funding_body_reference BB/P504658/1

myfinance_award_number 172166
start_date 2016-10-01

end_date 2020-09-30
award_amount 104696

fes_due 2020-12-31
staff_name AE

Notes
Update

Remove

Figure 4.2 — Detailed View

Search Results Click on a row to show the detailed view.
Detailed View Related quick-search links to the other table views as well as update.
From Award: -> Allocation (myfinance_award_number and funding_body_reference)
From Allocation: -> Award (myfinance_award_number)

-> Student (myfinance_code)

From Student: -> Allocation (myfinance_code)
-> Collaborator (collaborator_code)

From Collaborator: -> Student (myfinance_code)

funding_body_name BBSRC award_type Doctoral Training Grant - Dr. Rebecca Shipley
(Mechanical Eng)
award_name Cell Reproduction
principal_investigator Prof. Rebecca Shipley
funding_body._reference BB/P504658/1
myfinance_award_number 172166
start_date 2016-10-01
end_date 2020-09-30
award_amount 104696
fes_due 2020-12-31
staff_name AE
Notes
Update
Remove
funding_body_reference myfinance_award_number myfinance_code Department faculty supervisor fte allocation_type budget start date end_date
BB/P504658/1 172166 533983 Mechanical ~ Engineering Prof. 100 CASE 104696 2016-10- 2020-09-
Engineering Rebecca o1 30
Shipley

Figure 4.3 — Related Query Result from Detailed View

4.1.2 System Architecture

The system consisted of several components that enable the users to interact and
fulfill the use cases required. Below is a diagram of the main components of the
system and the actions that connect them to one another.

15

enders Vie: ponds toR

eracts wit nds Reque

Figure 4.4 — System Architecture Overview

Front End

The front end is where the user is presented with a simple navigation bar
linking to the four query types. Primary users will see a dropdown menu that
allows them to add records to the database, while secondary users will only be
able to search for records. This is where the users interact with the application;
the front end takes in the user’s actions then passes and receives information from
the back end, presenting the resulting information to the user. The mechanisms
behind communication with the back end and other functionality implementations
are abstracted and hidden from the user.

Awards Allocations @ Collaborators

ype| Award Type Award Name =~ Award Name

AllRights Limited

Funding Body Name Funding Body Name
Funding Body Reference Funding Body Referenc MyFinance Award No. My Finance Award No. Award Amount Award amount

FES Due mm/dd/yyyy Start Date. mm/dd/yyyy End Date mm/dd/yyyy

Show All Awards

Figure 4.5 - Front End Search Form

16

Back End

The back end consists of a server that communicates with both the front
end and the database. Requests are made to the server from the front end and
consequently from the user interacting with the application. These requests
trigger specific actions from the back end that can involve fetching information
from the database and serving it back to the front end to present to the user. Some
preprocessing is done in the back end on the information before responding back
to the front end. The logic and complexity of building the server is hidden from
the user; only the user interface interacts directly with the user and the front end
and back end respond accordingly.

Database

The database entity relationship diagram was mapped out to contain the
entries from the four different types of data sheets. Four tables were used for
awards, allocations, students, and collaborators. Each table contains rows and
columns, with the column values specifically describing the entry of the
corresponding row. The relationships between the tables were noted based on
primary and foreign keys that were present in records from different tables.
Noting these relationships maintained data integrity in the event of removing one
data entry and its related entries in other tables. The design of the database was
integral in improving the speed of looking up information on all aspects of a
research grant. The related queries available from the detailed view also made
involved querying the database. During the requirements gathering phase, the
team also went through the columns for each of the possible data values in each
table to define the data types necessary for the database. Below is the completed
entity relationship diagram.

17

Database Entity Relationship Diagram
Fund Support Have
Awards 0.+ 11 i = -~ > Students s - Ci
funding_body_reference (PK) (FK) ID (PK) ID (PK) myfinance_code (PK) (FK)
myfinance_award_number (FK) :lb funding_body_reference (FK) first_name collaborator_name
funding_body_name jes surname start_date
award_type end_date | myfinance_code (FK) end_date
award_name start_date start_date amount
principal_investigator budget end_date first_name
start_date allocation_type fte surname
end_date fte amount supervisor
award_amount supervisor stipend notes
fes_due faculty fee
staff_name department other
notes myfinance_code (FK) fe—— form_s
award_number (FK) fees_only
EPSRC_voucher dsa
notes ofa
internship
jes
collaborator
collaborator_code (FK) < J
collaborator_amount
notes

Figure 4.6 — Database Entity Relationship Diagram

4.1.3 Site Map

The different pages and views of the application are show in the site map below.
The application structure is like the site map except with four different query
types for each site view.

N

Home P S — > Secondary Us

Search €--------

Update/remob Detailed Vie

Add

Figure 4.7 — Site Map

18

4.1.4 Application Structure

The application is structured so that the
users have multiple quick and easy methods of
accessing certain records in the database. If the
specific fields of an entry are known, the user can
input the fields known and select the desired
record to display. Alternatively, using the
hyperlinks for related queries, a user can
navigate to any desired record in the system in
around five clicks even if the user does not
remember any of the search fields for the desired
record. Below is a simple diagram of a user’s
possible interactions with the application. The
dashed lines represent secondary user interaction
and the solid lines represent primary user
interaction.

4.1.5 Design Patterns

A design pattern is a widely accepted and
reusable type of solution to a problem that is
quite common. The team implemented several
design patterns during the development of the
application, namely the Model-View-Controller,
Command, Observer, Module, and Lazy
Initialization design patterns.

Model-View-Controller (MVC)

MVC, one of the most well-known
patterns, and the basis for many GUI
frameworks, was used to design the application.
Generally regarded as an architectural level
pattern, MV C splits the design process into three
areas: data, event handling, and visible
representation. The model component holds the
data and triggers the view component upon data
changes. The view component receives data and
represents it for the user, while also notifying the

Search awarl

Home % -------- —>»] Secondary Us%
i
1
1

Update/remove at;;a

BN

Add award

Search allocation

Update/remo
allocation

Add allocat;oI

Search studeh

Upd ale/remoh

student

Add student

Search Collabor

)

Update/remove

:

Add Collab

Figure 4.8 - Application Structural Flow 1

controller when views change state. Finally, the controller handles events and
chooses the correct model or updates the view. The different components of the
application contribute to these different needs. In terms of user interaction, the

19

user sees the view and interacts by sending inputs to the controller. A diagram of
the MV C model is shown below.

Controller

|
|
|
|
|
]

View F “““““““ Model

J

Figure 4.9 - Model View Controller Diagram

Command

The command design pattern encapsulates requests as if they are objects,
primarily to execute or wait on requests at different specific times. This
establishes a history of requests and resembles the control aspect of threading and
asynchronous I/O. The team utilized concepts of the command design pattern in

the back-end server implementation primarily with promises and resolve/reject
call backs.

Observer

The observer design pattern is characterized by different components in the
application having a one to many relationships. This dictates communication
between components, and a single change causes those dependent elements to
automatically update as well. The observer design pattern is integrated into MVC,
as the view component inherently observes and waits on the model component.
An example in the application is how clicking on a detailed view for a record
initiates and renders the update button, remove button, and related hyperlinks.
These components wait for the detailed result to be selected to select of use the
correct data.

Module

The module design pattern partitions related code into work packages that
serve more specific functions. This allows for modularity, faster development,
and efficient code organization and maintenance. In this application, modules
flourished in both the front and back end. The front end contained modules that

20

handled searching/adding records and removing/updating records. They were
distinct because removal and update options observe only are presented when a
record is rendered in a detailed view. By separating these two, development could
proceed in parallel and once both were completed, the modules seamlessly
interacted. On the back end, the core server component handled requests from the
client by utilizing other specific modules. These include a module for database
operations and the HTTP request module.

Lazy Initialization

Lazy initialization solves the problem of slow bottlenecking by only
performing certain operations when they are needed. This “lazy” approach
ensures that whichever process needs the most resources at any given moment
should theoretically have access to the resources since other processes will not be
taking up the computer’s resources until they require it. One example is the update
form, which only is rendered when the update “onClick” event handler is
triggered. The form is then populated with the current values of the record. This
process takes up the computer and application’s resources only when it is
necessary.

4.2 Implementation

4.2.1 Development Tools

The team utilized several development tools that maximized efficiency to
aid in completing this project. An online integrated development environment
(IDE) was chosen primarily because constantly testing the application live was
important. Cloud9 offered a free web server hosting service and this streamlined
the development process tremendously. Instead of working on local branches, all
branch development was on the cloud. Since the application quickly reached the
phase where online deployment was crucial for testing, using Cloud9 proved to
be an ideal choice. When online access was limited, Allen would use Sublime to
work on the front end code while testing on his local machine.

The Cloud9 IDE was also integrated with GitHub. GitHub is a version
control tool that manages the main repository for a project. Contributors can
branch off while working on different features, then merge their changes back
pending an approved pull request. The team utilized Cloud9’s ability to
synchronize with their GitHub repository to ensure that their rapid testing of the
application still followed the standard procedures of version control and
collaboration through GitHub.

21

A Slack team chat channel was also created. Slack is a communication tool where
team members update the rest of the team on progress or other important
development issues.

The development tools used in this project and their roles are shown in the
diagram below.

) GitHub

Figure 4.10 - Development Tools Diagram

4.2.2 Front End Implementation

Like most common web applications, the front end of this project was built with
HTML + CSS + JavaScript. Additional frameworks were also used for
responsiveness and dynamic views.

In constructing the layout of the web application, Bootstrap was integrated due to
its clean form styling and responsiveness for multiple platforms. Bootstrap is a
CSS web development framework that offers clean and easy styling of HTML
elements.

As previously discussed, the client side view was built using vanilla JavaScript,
rather than a popular framework like React or Angular. The dynamic web
application utilized several traditional elements of JavaScript like event handlers
and DOM manipulation. Using just JavaScript gave the developers more control
over the front end and increased their understanding of JavaScript without
simplifications offered by frameworks.

22

4.2.3 Back End Implementation

The popular NodeJS runtime paired with Express web server to create a
fast and lightweight server. Using the node package manager, the team installed
the node mysql library to manage the SQL database. This framework provided
abstracted methods to manage the database and ensured the entire back-end
development utilized JavaScript. Express endpoints were the avenues for
communication with front end requests. The server would then process these
requests before accessing or modifying the database with the mysql package.
Since the front and back end both communicated with HTTP requests passing
JSON objects, the mysql extension was extremely useful as it also passed
information from the database in JSON format.

4.2.4 Key Functionality Implementation

The following sections detail the implementation of the core “must-have”
requirements for the project, from a full-stack perspective.

Add Data to Database (via Excel sheet migration or form input)

Initially, the client’s data was spread over hundreds of Microsoft Excel sheets.
Specifically, for any given award, at least two spreadsheets would be required to
hold all pertinent information. Therefore, prior to data migration, there was a need
for some data manipulation to condense information in an organized fashion.
Mark, our client, also helped in this process, by providing some sample data in a
single spreadsheet, formatted consistently (unlike data in spreadsheets that was
inconsistent and occasionally partial.) With the data at hand, the database tables
were constructed with SQL command-line queries and tailored to the data fields
Mark wished to retain. Data migration then was a matter of running a short
NodelS script to import the csv data file into the database.

Search for Different Record Types

Under the client’s previous data management system, a loose file
organization system using folders and Excel sheets meant that a lot of familiarity
with the relative location of certain records was necessary to look up any record
with any reasonable speed. Even if a new user knew all the column values in a
record, without prior knowledge of the folder organization of the hundreds of
Excel sheets, searching for records would be extremely tedious.

The team’s solution inherently improved this functionality greatly by
storing records in a database with four tables. The front end presents users with a
navigation bar to the four different search forms where the user can search the
specific table, whether it be award, allocation, student, or collaborator. The client
side JavaScript then processed the user inputs for these four search forms and

23

would make a fetch HTTP request to an Express endpoint on the back-end server.
The back-end then queried the database, then returned the response to the client
either with a result set or null set. The front-end then rendered the results in a
view for the user with the ability to click each record and view it in greater detail.
Thanks to the design patterns mentioned previously, this functionality performed
a lot more efficiently in the application compared to the previous system.

Update and Remove Records

The team could use modularity to develop the update and remove
functionalities in parallel with searching functionality. The team decided that a
user should be presented the options of updating or removing only after seeing
the detailed view of a record. Since the detailed view of a record was presented
upon clicking a search result, there would have been a bottleneck in development
waiting to finish implementing search before starting update and remove. Upon
rendering the detailed view of a record, the client generates two buttons with
JavaScript that both contain the current record’s columns. These values are used
as the parameters to either update or remove the correct record.

If update is chosen, the update form is rendered with the record’s previous
values all prefilled into the form. A cancel option is also present which takes the
user back to the detailed view. After the user makes changes to the form and
submits, the front end sends the two form inputs to the back end; the first input
contains the values of the record to change and the second contains the desired
new changes of the record. The back end then runs an update query on the
database using the first input as a parameter and the second as the update field.

For remove, a confirmation pop up is rendered before allowing the user to proceed.
Once confirmed, the parameters of the original record are sent to the back end
which executes a delete query.

Both functionalities return either a success or fail response to the front end.
Should the access rights be toggled from “all rights” (primary users) to “limited”
(secondary users) then the update and remove buttons are never rendered. This
prevents secondary users from modifying the data in the system, effectively
giving them read-only permission.

4.2.5 Data Storage (JSON) and database

JSON is the data structure we used to store data for the front end view
component. Each row in the search results contained a hidden field with the
record’s values stored as JSON. The JSON was iterated to generate the detailed
view for each record when clicked. The team chose to store the data instead of
having to make an additional query to the back end and database whenever a

24

detailed view was clicked. This improved the responsiveness and speed of the
application at the relatively low cost of using JSON. Saving the JSON data for
each record also helped in speeding up the remove and update functionalities,
since the front end made requests to the back end using JSON. These
communications contained parameters and changes to the database in the form of
JSON, thus storing each row with the column values as JSON parameters served
multiple purposes that outweighed the cost of extra storage. In the back-end,
whether adding, updating, or deleting a record, iterating over a JSON object with
the necessary data fields was a very convenient way of generating the necessary
SQL queries for communication with the database.

4.2.6 Package Tree

The following diagram details the structure of the application’s development
repository. Directories left unexpanded are the node modules and the fonts folder.

Figure 4.11 - Package Tree Structure

4.2.7 Project Management

To combat the delayed start to the project, the team made sure to schedule
their deliverables in accordance with strict timelines to meet the deadline for their
client. A month before the project was due, they already had basic functionalities
working and performed a live demonstration for the module instructor and client.
After starting behind schedule, within two weeks the team’s progress had already
caught up and eventually surpassed the expected progress timeline. This was
achieved by a combination of hard work and efficient project management.

Gantt Chart

The following Gantt Chart shows the visualization of the project timeline.
The timeframe for completing tasks that led to the completion of the project are
presented using the bi-weekly reports for the module as a reference.

25

Planning

Requirements

Ul Wireframe

W
Mon Jan 30
Report 1

g — 1/20-27

Technology Research | | D 2/3-2/10

I — |
Development
Database

Back End

FriFeb 10
Report 2

Project Timeline

Jan30-Feb 13

2/7-2/13
By a2
. 2/14-3/10

Feb 14 - March 24

Front End 2/17-3/20

il

Functionalities

Test & Debug

2/24-3/24

March 25 — April 25

Testing &
Report | —"

Y 5/1-4/10

Technical Report N /10 - 4/25

Poster p 4/20-4/23
|
Video D 4/20-4/25
FriFeb 24 Fri Mar 10 Fri Mar 24 Wed Apr 26
Report 3 Report 4 Report 5 Deliverables

Due

Figure 4.12 - Gantt Chart Project Distribution

26

S Testing
5.1 Functional Testing

The process of testing our software solution was methodical and thorough.
To begin with, the core code development was done in a highly modular fashion.
This allowed for debugging specific functions and small parts of the code
individually with designated tests, and helped avoid unexpected bugs later on.
Early in the development process, the team devised an extensive list of corner and
edge cases that would be used to test the robustness of any piece of code written.
This list includes, but is not limited to, empty fields, numerical strings, strings
containing symbols, and non-ASCII characters. We ensured that the program
handles all the aforementioned cases gracefully, both during module testing and
end-to-end tests. During the latter stages of the development process, we regularly
tested our product as a whole, making use of all available functionality, and
ensuring that the continuous development and addition to the code base did not
introduce any unexpected software bugs or other issues

5.2 Compatibility Testing

Development of the product was primarily done using our preferred browser,
Google Chrome. However, we learned why compatibility testing is crucial the
hard way, when we tested our working solution on Safari and it was totally
unresponsive. Nevertheless, it turns out that JavaScript compatibility with Safari
1s not an uncommon problem. As research revealed, fetch, a function extensively
used in our front end code to make post requests to our server, is not native to the
Safari browser, so the application was unable to communicate with our database.
Fortunately, the issue was resolved by adding a Javascript polyfill' to our code
base that restored the functionality of fetch.

The full results of our compatibility testing process can be found below.

Device & Browser Comments Results

Desktop (Chrome) Mac, Linux, Windows All testing successful
Desktop (Firefox) Mac, Windows All testing successful
Desktop (Safari) Mac All testing successful
iPhone 7 (Safari) All testing successful
iPhone 7 (Chrome) All testing successful
iPhone 6 (Chrome) All testing successful
iPhone 6 (Safari) All testing successful
iPhone 6 (Opera) All testing successful
Android (Chrome) All testing successful

! https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills

27

5.3 Responsive Design Testing

Although the product was designed as a web application to be used primarily on
Mark’s wide computer screen, it was important to ensure that the web application
would be functional and responsive irrespective of the environment used to access
it. Therefore, we repeated the testing process on a variety of different screens,
including Macbook Air and Macbook Pro machines, desktop devices running the
Windows OS, and popular smartphones such as iPhones 6 and 7 and Android 6.
We ensured that the application is intuitive and easy to use on all devices, and
adjusted our user interface slightly to accommodate the “fat-finger” problem
potentially arising on mobile devices.

The full results of our responsive design testing process can be found below:

Device Results

Macbook Pro 15-inch (2880 x 1800) All testing successful
Macbook Air 11-inch (1440 x 900) | All testing successful
iPhone 7 (1920 x 1080) All testing successful
iPhone 6 (1334 x 750) All testing successful

5.4 User Acceptance Testing

In order to decide on the strong aspects of our product’s user interface and on
potential future improvements, we employed the help of friends and classmates.
Due to the sensitive and confidential nature of the data at hand, we used dummy
data throughout this phase of testing to protect the information Mark has entrusted
us with.

Positive Feedback e Intuitive user interface

e Minimalist design

e Thorough search options

e Fast and responsive interface

Areas for improvements e More environment-specific responses (e.g.
automatic resizing for phone screens) (out of
the scope of this project)

e Explanation of data fields (redundant, given
that potential users are already familiar with
the nature of the data)

e More aesthetically pleasing data display

28

6 Conclusion
6.1 Summary of Achievements

Requested Features

ID | Description Priority | State Contributors

1 | The new system is to manage the information from | Must Complete | Stelios,
the current system’s hundreds of spreadsheets. Allen
After migration into a database, the system must
store the data reliably and securely.

2 | Adding, editing, and removing entries from tables | Must Complete | Stelios,
should be intuitive and simple Allen

3 |[Users can conduct different searches using | Must Complete | Allen,
different parameters to obtain a result-set for Stelios
award, allocation, student, and collaborator
information.

4 | Client department users can update a notes section | Must Complete | Allen,
for each award, allocation, student, and Stelios
collaborator row, providing a form of version
control and logging/consistency.

5 | Completed grants should be still recorded and | Should | Complete | Stelios,
searchable, per UCL guidelines in retaining Allen
records

6 | Users have different privileges, managed by the | Should | Complete | Allen,
client’s department. Primary users have read/write Stelios
access, secondary users only allowed to read.

7 | For improved workflow, detailed results for data | Could | Complete | Allen,
entries should have hyperlinks to related queries Stelios
of different search categories (award -> allocation
-> student -> collaborator).

8 | The system supports integration with portico/UCL | Could | Out of [N/A
since UCL owns the information - data integrity scope

9 | The system currently supports all of the RCUK | Won’t | Out of | N/A
grants, and eventually collaborators from external scope
parties will be added to the system.

29

Workload Distribution

ID | Work Package Category Contributors

1 | Meeting Client to Gather Abstract | Client Interaction | All
Requirements

2 | Analyze and form MoSCoW requirements Requirements All

Analysis

3 | Formulate use cases and iterate and review | Client Interaction | All

with client /Requirements
Analysis

4 | Research Possible Technologies and different | Research All
Implementations

5 | Front End research Research Allen

6 | Back End/Database research Research Stelios

7 | User Interface Design UI Design Allen

8 | Search Forms Rendering and Processing Front End Allen

9 [Client side JS for dynamic rendering of results | Front End Allen
and communicating with server

10 | Results quick-search hyperlinks within | Front End Allen
detailed view

11 | Database Design Back End Stelios

12 | Database Creation and Management Back End Stelios

13 | Excel Data Migration Back End Stelios

14 | Server receiving and handling queries to the | Back End Stelios
Database and serving back to client

15 | Bi-Weekly Report #1 Reports All

16 | Bi-Weekly Report #2 Reports All

17 | Bi-Weekly Report #3 Reports All

18 | Bi-Weekly Report #4 Reports All

19 | Bi-Weekly Report #5 Reports All

20 [Technical Report Abstract Reports Allen

21 [Ch. 1 Technical Report Introduction Reports Allen

30

22 | Ch. 2 Technical Report Requirements Reports Allen
24 [Ch. 3 Technical Report Research Reports Allen
25 [Ch. 4 Technical Report Design and | Reports All
Implementation
26 | Ch. 5 Technical Report Testing Reports Stelios
27 [Ch. 6 Technical Report Conclusion and | Reports Stelios
Future
28 | Compatibility and User Testing Reports Stelios
29 | Technical Report Appendix Reports Allen
30 [Technical Report References Reports Allen
31 | Poster Poster Design Stelios
32 | Video Video Editing All
Individual Contribution Table
Work Package Allen Stelios
Client Liaison 60% 40%
Requirement Analysis 50% 50%
Research 40% 60%
UI Design 75% 25%
Front End 80% 20%
Back End 10% 90%
Testing 25% 75%
Technical Report 66% 34%
Bi-Weekly Report 50% 50%
Poster Design 0% 100%

31

Video Editing 50% 50%

Overall Contribution 55% 45%

Developer, Client Liaison, | Researcher,
Tester, Report Editor Editor, Tester

Roles Ul Designer, Front End|[Back-End Developer,

Report

6.2 Ciritical Evaluation

From our first meetings with Mark, we discussed extensively what the
purpose of the project should be. We agreed that building the perfect tool for him
would be far beyond the scope of this class assignment, as there are vast amounts
of empowering features that could be implemented but would require a full-time
commitment and professional work, access to UCL APIs, integration with Portico,
etc. Mark highlighted that UCL has been unable to provide him with professional
software for his work in the past, siting an inability to find such software that
caters to his exact needs. After further discussions, we concluded that the best
course of action would be the following: develop a web application prototype
tailored to Mark’s needs and wants, which he would use to demonstrate the
benefits of a tailor-made professional software solution compared to the current
system in place. This demonstration, he hoped, would expose his immediate need
for a new professional solution and urge UCL to provide him with funds for one.

The final product is very satisfying overall. It’s a lightweight, clearly
written, NodeJS web application that uses the latest technology in front-end and
back-end web application design, such as asynchronous promises, for speed and
efficiency. The outcomes decided upon over the course of our meetings with
Mark have been met, and the software solution closely emulates Mark’s initial
vision in terms of its functionality. The code is clearly documented and robustly
tested, compatible with all major devices, browsers and operating systems, and
provides an intuitive, easy-to-use interface. First, we developed a streamlined
process for standardizing Mark’s unordered and unformatted data, and importing
the information into clearly defined and logically intuitive SQL tables. Apart
from organizational advantages, the database integrity guarantees offer more
reliability and security, and minimize the impact of possible human error on large
volumes of sensitive information. More importantly, tasks that Mark repeats daily,
which currently involve scrolling and searching through lists of Excel documents,
are now a matter of a single click. Searching, adding, editing, and deleting
information now involves querying the database via an intuitive and convenient
platform that interacts with the data transparently and only presents the user with
relevant results. Under our solution, Mark never has to interact with the entirety
of the data stored. On top of that, such a web application approach allows him to

32

work remotely and not rely on his work computer, where the Excel spreadsheets
are stored.

6.3 Future Work

Had we had more time to dedicate to this project, we might have followed a
different course of action and set significantly different objectives for our end
result. Instead of a proof of concept, we could have attempted to implement a tool
that Mark could actually use in his work. However, such a tool would have to be
taken over and maintained by the UCL IT department, which would require
numerous meetings with UCL engineers, development of the product in
completely different programming lagnuages (for compatibility with UCL
engineers’ work), and other time consuming processes that we decided were
beyond the scope and timeframe of the class’s project.

33

7 References

“Research Councils, UK” [Online]. Available: http://www.rcuk.ac.uk/.
[Accessed: February 2017]

“Research services, UCL” [Online]. Available:
https://www.ucl.ac.uk/finance/fba-teams/research-services
[Accessed: February 2017]

“React Tutorials” [Online]. Available:
https://facebook.github.io/react/docs/hello-world.html. [Accessed: February
2017]

“Advantages and disadvantages of React” [Online]. Available:
http.//'www.pro-tekconsulting.com/blog/advantages-disadvantages-of-react-js/.
[Accessed: April 2017]

“Angular JS” [Online]. Available: https.//github.com/angular. [Accessed:
February-April 2017]

“Advantages and disadvantages of AngularJS” [Online]. Available:

http.//www.software-developer-india.com/advantages-and-disadvantages-of-
angularjs/. [Accessed: April 2017]

34

Appendix

A. User Manual

The user interface of the application is designed to be intuitive and easy to use.
Depending on what data the user wants to access or modify, they can click
Awards, Allocations, Students, or Collaborators. To add information to the
database, one should click ‘Add’ on the corresponding drop-down menu, then
proceed to filling in the provided form and hitting ‘Add’. To search for data
entries, one should hit ‘Search’ on the appropriate drop-down menu, fill in the
information they wish to query with, and hit search. After the results appear, the
user selects the entry of interest, which becomes the main view of the page, and
is presented with two additional buttons: ‘Update’ and ‘Delete’. Hitting ‘Update’
will present the user with a form that allows them to modify any data they wish,
subsequently clicking ‘Update’ to commit and store the changes, or ‘Cancel’ to
discard them. Hitting ‘Delete’ removes the chosen entry from the database.

B. Deployment Manual

In its current state, our application can only be ran from the environment it
was developed in, namely the Cloud9 IDE (www.c9.10). The cloud9 environment
is not only an extremely convenient platform, but also provides a built-in database
server, which makes development and server-database integration easier. Since
our system currently uses the database server running on our shared IDE’s
localhost, the application can only be ran from within a local terminal that has
access to localhost, and only after the database server has been started.

As with every node application, NodeJS needs to be installed and updated in
order for the app to be launched.” In addition to that, all library dependencies must
also be installed. the Node Package Manager, or npm, takes care of that; after
successfully installing node, executing ‘npm install’ in the application’s home
directory (i.e. where package.json 1s located) will automatically install the latest
versions of all dependencies listed in the package file.

On the Cloud9 IDE, the application can then be ran simply by executing the
bash script ‘fest’ (included in the code submission), which simply starts the
database server, and then runs the application’s entry-point, namely app.js. This
process can also be followed manually, by executing ‘mysql-ctl restart’, ‘cd
~workspace/funds/server’, and ‘node app.js’, in that order. If running the
application off the cloud, modifying lines 19-26 of app.;js is necessary to establish
a connection with the database server used, but the first step described here is no
longer necessary.

? https://nodejs.org/en/download/

35

C. System Manual

Standard NodeJS application development practices have been followed
throughout the production of our solution. The entry-point of our application is
named ‘app.js’, following the popular convention, and the package.json file
contains all necessary compatibility information and dependencies to run the
software.

The code is structured as follows: the server/ directory contains the back-end
entry-point, as well as two files with helper code functionality, namely helpers.js
and sql.js. Whereas app.js loads all relevant libraries, connects to the database
server, and defines all the active server endpoints, sql.js contains all functionality
that renders and executes SQL queries. Finally, helpers.js contains some helper
methods for string manipulation, numerical calculations etc.

The client/ directory contains the main html view file, index.html, as well as
three subdirectories, css, fonts, and js, where stylistic elements and front-end
scripts reside. Specifically, js/scripts.js contains our front-end JavaScript code,
whereas bootstrap.min.js, jquery.min.js, and fetch.js contain third-party code that
supplements our functionality.

Lines 19-26 of app.js establish a connection to the SQL database. In
developing and demoing the product, we used Cloud9’s built-in database server,
with localhost as the host and 3306 as the port (which is specific to Cloud9). If
using a different database server (which will likely be the case), the parameters
of the connection have to modified to match those of the server used.

D. Code Citation

No. | Function Name File Source
Name
1 findPos scripts.js| http://stackoverflow.com/questions/11880443/how-

to-scroll-browser-to-desired-element-by-javascript

2 Number.prototype.format [scripts.js| http://stackoverflow.com/questions/149055/how-
can-i-format-numbers-as-money-in-javascript

3 N/A fetch.js | https://github.com/github/fetch/blob/master/fetch.js

36

E. Client Feedback

Dear Mark,

That sounds good. | also wanted to allow you to look over the Ul template
that | drew up based on your sketches. Of course we will hash out more of
the details and complexities of information tomorrow, but if you wanted
to take a look before our meeting that would be great.

Sincerely,

Allen

Hey Mark,

Just wanted to send you our bi-weekly report for you to check when you get
back.

Allen

| think a video of the basic functionality would be a good start;

after that perhaps the user interface;

then reports;

and perhaps a video of the required UCL architecture to support the system.

This could then lead to an overall demonstration of the proof of concept.

Cheers,
Many thanks
Allen
Mark
Hey Mark, Alan

Apologies but | have been unable to get adequate wifi to upload this video.
Here is the basic functionality of the project, and | am still working on the final
report that | will submit to both my instructors and you.

Sincerely,

Allen

The basic functionality looked to be all there. Assuming that you can deliver a
basic working model for me to use to sell the proof of concept and document as
previously discussed | am happy with the work done.

And thank you.

Mark

Sent from Samsung tablet

https://www.youtube.com/watch?v=Pp34xQjsZAc

37

F. Key Screenshots

Primary User Home Page

Collaborators

Awards Allocations
All Rights ~ Limited Search
Add

Search Form

Allocations Students Collaborators

Funding Body Name = Funding Body Name Award Type Award Type Award Name ~ Award Name

All Rights ~ Limited

Funding Body Reference Funding Body Referenc | MyFinance Award No. My Finance Award No. Award Amount ~ Award amount

FES Due mm/dd/yyyy Start Date. mm/dd/yyyy End Date. mm/dd/yyyy

Show All Awards

38

Search Query Results

Search Results
Detailed View
From Awal
From Allocatiol

From Student:

From Collaborator:

Click on a row to show the detailed view.

Related quick-search links to the other table views as well as update.
-> Allocation (myfinance_award_number and funding_body_reference)
-> Award (myfinance_award_number and funding_body_reference)

-> Student (myfinance_code)

-> Allocation (myfinance_code)

-> Collaborator (collaborator_code)
-> Student (myfinance_code)

funding_body_name award_type award_name principal_investigator

AHRC Doctoral London Arts Prof. Jonathan Woolf
Training and
Partnership Humanties
Partnership
BBSRC Doctoral LIDO 2 Prof. Gabriel Waksman
Training
Partnership
BBSRC Doctoral Macrophage Prof. Rachel
Training Plasticity and Chambers
Grant - Tissue Repair
Medicine
(Prof Rachel
Chambers)
BBSRC Doctoral Cell Prof. Rebecca Shipley
Training Reproduction
Grant - Dr.
Rebecca

funding_body_reference myfinance_award_number start_date end_date award_amount

AH/L503873/1 159110
BB/M009513/1 167165
BB/P504440/1 172088
BB/P504658/1 172166

2014-01- 2020-03- 11074053.98

10 31

2015-10- 2023-09- 20920514
01 30

2016-10- 2020-09- 104696
01 30

2016-10- 2020-09- 104696
01 30

Detailed View

All

Search Results
Detailed View
From Award:
From Allocation:

From Student:

From Collaborator:

funding_body_name
award_name
funding_body_reference
start_date
award_amount
staff_name

Update

Allocations @ Collaborators

Click on a row to show the detailed view.

Related quick-search links to the other table views as well as update.
-> Allocation (myfinance_award_number and funding_body_reference)
-> Award (myfinance_award_number and funding_body_reference)

-> Student (myfinance_code)

-> Allocation (myfinance_code)

-> Collaborator (collaborator_code)
-> Student (myfinance_code)

BBSRC

LIDO 2
BB/M009513/1
2015-10-01
20920514

KG

award_type
principal_investigator
myfinance_award_number
end_date

fes_due

Notes

Remove

Doctoral Training Partnership
Prof. Gabriel Waksman
167165

2023-09-30

2023-06-30

39

Updating a Record

All Rights

Funding Body Name BBSRC

FES Due 06/30/2023

Principal Investigator

Search Results
Detailed View
From Award:
From Allocation:

From Student:

From Collaborator:

Funding Body Reference BB/M009513/1

Prof. Gabriel Waksman

Allocations Students Collaborators

Award Type Doctoral Training Partn¢ Award Name LIDO 2

MyFinance Award No. 167165 Award Amount 20920514

Start Date, 10/01/2015 End Date 09/30/2023

Notes

Staff Name KG Notes

4

Click on a row to show the detailed view.

Related quick-search links to the other table views as well as update.
-> Allocation (myfinance_award_number and funding_body._reference)
-> Award (myfinance_award_number and funding_body_reference)

-> Student (myfinance_code)

-> Allocation (myfinance_code)

-> Collaborator (collaborator_code)

-> Student (myfinance_code)

Removing a Record

All Rights Limited

Search Results
Detailed View
From Award:
From Allocation:

From Student:

From Collaborator:

funding_body_name
award_name
funding_body_reference
start_date
award_amount
staff_name

Update

node-sr692.cs50.io0 says:

Delete this entry?

~ Prevent this page from creating additional dialogs.
Click on a row to show i J
Related quick-search links 0 TG GTEr TABIENIEWS B Wall &8 Upaaien

-> Allocation (myfinance_award_number and funding_body_reference)
-> Award (myfinance_award_number and funding_body_reference)

-> Student (myfinance_code)

-> Allocation (myfinance_code)

-> Collaborator (collaborator_code)

-> Student (myfinance_code)

Cancel

AHRC award_type

London Arts and Humanties Partnership principal_investigator

AH/L503873/1 myfinance_award_number
2014-01-10 end_date
11074053.98 fes_due
KG Notes
Remove

Doctoral Training Partnership
Prof. Jonathan Woolf
159110

2020-03-31

2020-06-30

40

Adding a Record

Allocations Students Collaborators

Funding Body Reference Funding Body Referenc | MyFinance Award Number — MyFinance Award Nu MyFinance Code MyFinance/Project G

All Rights ~ Limited

Allocation Type: | Studentship 4] EPSRC Voucher EPSRC Voucher Department | Department
Faculty Faculty/P| Budget Budget Jes: | Yes 3
Start Date. mm/dd/yyyy End Date mm/dd/yyyy Supervisor Supervisor
FTE FTE Notes Notes

4
Add

Secondary User Home Page without Add

Awards Allocations Collaborators

AllRights Limited

41

Secondary User Detailed View without Update/Remove

Students Collaborators

Search Results Click on a row to show the detailed view.
Detailed View Related quick-search links to the other table views as well as update.
From Award: -> Allocation (myfinance_award_number and funding_body_reference)
From Allocation: -> Award (myfinance_award_number and funding_body_reference)

-> Student (myfinance_code)

From Student: -> Allocation (myfinance_code)
-> Collaborator (collaborator_code)

From Collaborator: -> Student (myfinance_code)

AllRights Li

funding_body_reference EP/L015129/2 myfinance_award_number 159189
myfinance_code 510820 Department Computer Science
faculty Engineering supervisor Dr. Mike Mullinger
fte 100 allocation_type EngD

budget 96000 start_date 2015-10-01
end_date 2019-09-30 jes yes
EPSRC_voucher Notes

ID 7

42

G. Bi-Weekly Reports

Bi-Weekly Report #1 - Research Grant and Fund
Management System

Team 49: Allen Wang, Stylianos Rousoglou
Client: Mark Burgess
Date: January 30th, 2017

Overview

We met with Mark Burgess, our client, on Monday January 30th. We were introduced to
the project idea which relates to Mark’s work in Research Services here at UCL. Through a
productive conversation, we made progress outlining some requirements and the reasons
behind this project idea. We discussed high level design and conceptual outline for how to best
solve Mark’s problem.

Meetings

January 30, 2017

Mark first introduced us to the problem at hand and outlined the current system used to
keep track of fund allocations, highlighting the need for a more sophisticated system going
forward. Research grant organization and fund allocation currently takes up hundreds of excel
spreadsheets, a method that the department has used for the past 20 years. As the funding
increases and the number of PhD students now hovers around 5000, a more efficient
information management system is badly needed; it would increase productivity for Mark’s
department as well as allow for data transparency between multiple departments.

Progress

We gained a high level idea of the problem at hand. Requirements were mapped out
and split into two categories, “must” and “should” requirements, based on the client's immediate
needs and other desires. We began thinking of technologies and possible application design
approaches. Relevant background information regarding scope, use cases, and purpose were
fleshed out via a productive initial meeting. Looked into node.js libraries for potential database
(NoSQL, MySQL) integration.

43

Issues

Our understanding of the data is currently still lacking. We need to contact the client and
discuss the significance of all the information available, as well as possible ways to condense it.
In designing our database and implementing requirements, we need to completely understand
how the data relates to each other and to the grand scheme of the project. We are currently
unsure of details regarding implementation of back-end, deployment/hosting, and future
maintenance.

Next two weeks
e Delegate tasks
e Establish deliverables and timelines
e Research and agree upon technology stack
e Narrow down our implementation from a high level to a more concrete idea
e Plan to also draft together an ERD or database design for the information
e Schedule a second meeting with Mark to clarify questions
e |Initiate software development - test candidate libraries’ usability, integration etc.

Individual Work:

Stelios

| focused on researching possible tools and technologies we may use in the product's
lifecycle. Since we are leaning toward Node.js as our primary back-end development language,
| read through the documentation of various MySQL APIs for Node.js on github, ultimately
settling on the best-documented one. For a better grasp of the big picture, | also researched
various deployment options. Specifically, | looked into Docker and continuous integration with
Codeship. | also read more about Heroku's easy deployment package.

Allen

| arranged our meeting with Mark Burgess and gathered background information. With
this information and Mark’s consultation | wrote up some of the most necessary requirements. |
plan to design the database system and clarify how the data should be viewed in our next
meeting. | also looked at possible database managements systems (MySQL, NoSQL, GraphQL)
and we are |leaning towards MySQL.

44

Bi-Weekly Report #2 - Research Grant and Fund
Management System

Team 49: Allen Wang, Stylianos Rousoglou
Client: Mark Burgess
Date: February 10th, 2017

Overview

The past two weeks were our first chance to really sit with the project and work out
details, distill tool and design decisions, and set priorities. We met with Mr. Burgess on Tuesday,
February 7th, and offered him the bulk of our questions/clarifications. Mr. Burgess went into
detail about the specifics of his data and how to best manage it, the needs and wants of a
working solution, and his vision of simple software that will nevertheless greatly facilitate his
work, immediately. On our end, we wrote our first back-end and database code, and have been
using test data provided by the client to model user cases.

Meetings

February 7, 2017

We met with Mr. Burgess for a whole hour to discuss in more detail the aspects of his job
that are relevant to the development of the software solution. Having prepared a long list of
detailed questions in advance, we spent the bulk of our time noting and highlighting Mark’s
explanations and clarifications. The client then took the time to describe the basic features and
characteristics of a desired solution, going into extensive detail about querying and sample user
cases. We believe our meeting was extremely productive, as we both left having a much more
concrete idea of the problem at hand and the approaches to a solution.

Progress

In the past two weeks, we have:
e Decided the tools to be used in developing a solution
e Met with the client to establish requirements and priorities
e Explored and settled on Node.js libraries that will facilitate development
e Designed and created preliminary database files

45

Integrated and tested database-server communication

Written preliminary code for the product

Arranged our next meeting with Mark Burgess and UCL'’s Information Systems Division
(regarding deployment via UCL servers)

We think the project is running on time.

Issues

We are looking way into the future here, but given that the client's data is not only
sensitive but also confidential, we have been proactive in discussing ways of hosting the
software solution after it's been developed. Our client agreed that the best approach would be
contacting the Information Systems Division of UCL and scheduling a meeting to discuss
potential cooperation in deploying and maintaining the server.

Next two weeks

Meet with the client in their office to see his work and more data
Meet with the UCL Information Systems Division to discuss hosting
Continue developing back-end

Start discussing front-end and (minimalist) user interface

Import some of client's data into code for testing

Individual work

Stelios

| focused on back-end development in Node.js and data storage with SQL. | wrote
preliminary code to integrate the SQL server with the application’s server. | created preliminary
SQL tables to hold the client's data and enforce the appropriate rules on his dataset. | also
wrote some back-end methods for manipulating the tester data of the client, which include
asynchronous queries to and responses from the SQL server, and which are designed to be
highly modular (for good style and future reusability.)

Allen

| outlined the MoSCoW Requirements and began thinking of database designs and how
to store the information from excel into sql. | also set up a meeting with our client and the UCL
IT team to make sure we work out the details for hosting and maintenance. The database
design currently doesn’t seem to be too complex since it's more about fetching and querying
data that will be of use to our client.

46

MoSCoW Requirements

ID Description Priority

1 The new system is to manage the information from the current Must
system’s hundreds of spreadsheets, as well as updating adding
information and notes

2 Users have different privileges, managed by the client’s department Must
to allow read or read/write access

3 Users can conduct different searches using different parameters to Must
obtain a resultset for student, project, and grant information.

4 Client department users can change a notes section for each grant, Must
project, and student row, providing a form of version control and
logging/consistency.

5 Completed grants should be still recorded and searchable, per UCL Should
guidelines in retaining records

6 The system supports integration with portico/UCL since UCL owns Could
the information - data integrity

7 The system currently supports all of the RCUK grants, and eventually | Won’t
collaborators from external parties can also be tracked in this system

Tables and Keys
Name: Award

Description: A grant by the Research Council that is to be partitioned into projects and managed
by UCL

Keys:
Funding Body Ref (Varchar) - Primary Key
MyFinance Award No. (Int) - Unique
Start Date - (Timestamp)
End Date - (Timestamp)
Amount - (Double)
Status - (Varchar)

47

Fes Due - (Varchar)

Name: Project

Description: Each grant maps to one or many projects that the grant money can be allocated for

Keys:
MyFinance Code (Int) - Unique
Type - (Varchar)
EPSRC Voucher (Varchar)
Award (Double)
Jes (Varchar)
Industry Account (Int)
Supervisor (Varchar)
Industrial partner - (Varchar)

48

Bi-Weekly Report #3 - Research Grant and Fund
Management System

Team 49: Allen Wang, Stylianos Rousoglou
Client: Mark Burgess
Date: February 24th, 2017

Overview

The past two weeks we were able to plan and get a clearer outline of our preliminary
research. We met with the UCL IT services to discuss hosting and future end goal
implementations as well as developed our initial plans for the application implementation.

Meetings

February 21st, 2017

We met with Mr. Burgess and the UCL IT department consultants. They told us about
the available database, front and backend technologies that we could consider since our client
ultimately wants to make this available to UCL personnel and possibly integrated with Portico.
They advised us about our proof of concept tools, including Java(Spring), PHP, Oracle, MySQL
just to name a few. Ultimately we were able to relay our client’s vision and requirements to them
for a clear recommendation that this working prototype (proof of concept) would be best
implemented using the technologies we deem the most fit for implementation. Along with
hosting on cloud9, AWS, or Azure, we concluded that node.js and MySQL with JS
framework/Bootstrap on the front-end would be best. This helps us accomplish our client’s goal,
which is to build a model and working prototype that can enable his department and the
research council to assist in developing into a business application.

Progress

In the past two weeks, we have:
e Re defined the tools needed in our implementation
e Met with the client to clarify more requirements and understand the problem and solution
e Explored and settled on Node.js libraries that will facilitate development

49

o Reviewed and leared material on Angular/Bootstrap and other technologies needed for
the project
Sketched out Ul that satisfies requirements and clarified our high-level vision
Written preliminary code for the product
Arranged our next meeting with Mark Burgess where more of the data will be showed to
us in a demonstration to give us an experience with the old system UX and how we can
improve it

We think the project is running on time.

Issues

Allen is not familiar with Front end development and has to quickly get comfortable with
Angular and node + MySQL. Also there could be a bottleneck in development as most of the
backend code depends on the front end’s implementation.

Next two weeks

Meet with the client in their office to see his work and more data
Continue developing back-end

Continue developing front-end and (minimalist) user interface
Work on Data integrity before migration to our database

Individual work

Stelios

| continued to work on the initial code base, adding high-level back-end functionality and
many generic endpoints to which requests will be made by the front-end in the future. | also
revised the initial design of our database tables after a more comprehensive meeting with our
client, and continued to give thought to how to best design various functionality for features
to-be-developed.

Allen

I looked into the front end technologies and started learning via tutorial. | also sketched
out a lot of the Ul and looked at Ul minimalist design examples that would accomplish our goal.
During our meeting, we were able to satisfy our client’s use case requirements with our Ul
design of searches and data querying.

50

Bi-Weekly Report #4 - Research Grant and Fund
Management System

Team 49: Allen Wang, Stylianos Rousoglou
Client: Mark Burgess
Date: March 10th, 2017

Overview

In the past two weeks, we have started building out the front end and developing the
must-have requirements. Currently we are able to process search queries and add entries to
our database and have the Ul implemented. We will continue to look to improve this aspect as
well as finish up our server-side end points so this capability can be extended to all of the
categories of our application. We also finally received excel-sheet formatted data to sample with
our prototype demonstration. It had been an issue because a lack of data integrity prevented
our client from giving us these sheets earlier.

Meetings

March 8th, 2017

We met with Mr. Burgess in his office, where we were shown a demonstration of his
current information storage system. We also were shown different data sheets to give us more
details to add into our application. Mr. Burgess also gave us a positive response to our
developed Ul which allowed us to move onto other parts of our application. He also suggested a
few changes that we made sure to prioritize moving forward.

Progress

In the past two weeks, we have:

Outlined our technical challenges and tasks to complete in time

Developed solutions and began implementing them while dealing with debugging
Code progressed on both ends of our system

Arranged our next meeting with Mark Burgess where we’'ll show him the full
demonstration we show in our lab

We think the project is running on time.

51

Issues

We have only just received excel sheets for our demo, and have less than a week to
migrate them, as well as finishing up all of the javascript client and server side code to complete
all the requirements.

Next two weeks

e Demonstrate progress and some functionality in lab and to our client
e Finish developing back-end
e Finish developing front-end

Individual work

Stelios

| modified our database structure and added a table after seeing a complete view of Mr.
Burgess's information and data format. | also developed the backend and added more
endpoints and implemented some functions of our requirements. | also began looking at how to
migrate our client's new datasheets into our database.

Allen

| arranged the meeting with our and worked to incorporate his feedback into our Ul
design. After our meeting, | built up the Ul and client-side javascript to start going through the
requirements of our project. | made enough progress to where my strategies of satisfying the
requirements have proven to be successful, and can move on implementing it for the various
tables and data queries.

52

Bi-Weekly Report #5 - Research Grant and Fund
Management System

Team 49: Allen Wang, Stylianos Rousoglou
Client: Mark Burgess
Date: March 23rd, 2017

Overview

In the past two weeks, we have nearly completed all of the must-have requirements and
functionality of our project. We are capable of searching, adding, and updating entries to our
database system and have been able to migrate normalized data from our client's excel sheets
to our system. In the coming few weeks, we will clean up the User Interface as well as test our
system with different inputs and user actions to try and find bugs that break our system. We will
also start on our final submission deliverables.

Meetings

None Available

Mr. Burgess unfortunately was out of from the date after our in-lab demo on March 16th.
We were unable to meet with him and show him our demo and working functionalities but with
the approval of both our TA and Dr. Yun Fu, we believe that our progress will prove more than
satisfactory for when Mr. Burgess returns.

Here is the automated response from Mr. Burgess’s email.

Burgess, Mark
6’ Wednesday, March 22, 2017 at 10:49 AM
To: Wang, Allen

I am now out of the office until 31 March 2017 inclusive. | will not
respond to any emails received during these dates.

Please contact the following staff in my absence:

53

Progress

In the past two weeks, we have:

Fulfilled almost all of our requirements

Migrated all test data from Mr. Burgess'’s system into our database

Iterated over our code to fix bugs and improve functionality

Cleaned up and commented working code

Presented a live demo with successful functionality to our TA and module staff
Worked on code and library organization as well as user experience improvement

We think the project is running on time.

Issues

On the client side, our update function has to be redone to fix a bug. Also our Ul is not
as visually appealing as we would like. Color coding as well as other minor fixes to our front-end
will likely yield a tremendous improvement in the User Experience. This was the main area of
critique/feedback from our staff.

Next two weeks

e |mprove the Ul
e More testing

e Develop thorough documentation
e Work on all project deliverables

Individual work

Stelios

| worked on consolidating the back-end functionality and cleaning much of the code that
had been there for several stages of development. | factored code out into Node.js package files
for better organization and improved readability of the server-side program. | consolidated
several methods to minimize repetition of SQL syntax and queries, as well as added
comprehensive comments before all functions.

Allen

| made improvements to the front-end client javascript code and allowed us to satisfy
almost all of our requirements. | also implemented additional features like quick-search

54

hyperlinks between results that make for a more pleasant UX. | began working on revamping
the Ul as well, and will also seek to organize and comment out the client-side code better after
we'’ve achieved all of our functionalities.

55

