
1	
	

Research Grant and Fund Management
System

Web-Based Research Department Data Management System

Team 49
Allen Wang Stylianos Rousoglou

COMP103P Object-Oriented Programming

April 26, 2017

This report is submitted as part requirement for the undergraduate degree at UCL. It is
substantially the result of my own work except where explicitly indicated in the text. The report
may be freely copied and distributed provided the source is explicitly acknowledged.

Department of Computer Science
University College London

2	
	

Abstract

The Research Grant and Fund Management System is a web-based database
application designed for the University College London’s Research Services
Department. It was developed by team members Allen Wang and Stylianos
Rousoglou as a client project for the module COMP 103P - Object-Oriented
Programming. The team worked in tandem with UCL Assistant Director of
Research Services, Mark Burgess.

Mr. Burgess required a new system to manage the Research Service Department’s
information on individual students and research award allocations. The old
management system was both confusing and complicated; all the research award
information on allocations and students were stored in hundreds of excel sheets
lacking data normality. Managing all this information was both slow and prone
to data-integrity errors. The main issues that needed to be addressed were
improving efficiency in accessing data, adding data, and maintaining data.

The team moved away from the cumbersome realm of excel sheets and
implemented a web application that migrated data from excel into a database
management system. The technologies used were HTML and JavaScript on the
client side, NodeJS on the server side, and MySQL for the database. The front-
end was implemented with consideration to client specifications, while the server
and database schema were designed and developed entirely by the team members.

Since the long-term vision of the client requires UCL systems integration for user
access and security reasons, the team focused primarily on developing a working
proof of concept for the client. With a friendly user-interface and all functional
requirements satisfied, the completed project allows the client to demonstrate the
benefits of such a system in hopes of receiving the necessary resources and
approval to move onto full integration with UCL systems.

3	
	

Table of Contents

Abstract	..	2	

Table of Contents	...	3	

List of Tables and Figures	..	5	

1 Introduction	..	6	
1.1	 Background and Problem Statement	..	6	

1.1.1	 Client and project background	..	6	
1.1.2	 Outline of project	..	7	

1.2	 Approach to Project	..	7	
1.3	 The Development Team	..	8	

1.3.1	 Background of Team Members	..	8	
1.3.2	 Individual Team Member Roles	...	8	

2	 Requirements	..	9	
2.1	 Gathering Requirements	..	9	
2.2	 Persona	...	9	
2.3	 MoSCoW Requirements	...	9	
2.4	 Use Cases	..	10	

3	 Research	...	11	
3.1	 Related Projects	..	11	
3.2	 Front-End	...	12	

3.2.1	 React	...	12	
3.2.2	 Angular	...	12	
3.2.3	 Front-End Choice	...	13	

3.3	 Back-End	..	13	
3.3.1	 Java	...	13	
3.3.2	 NodeJS	..	13	
3.3.3	 Back-End Choice	..	13	

4	 Design and Implementation	..	14	
4.1	 Design	...	14	

4.1.1	 User Interface	...	14	
4.1.2	 System Architecture	...	15	
4.1.3	 Site Map	...	18	
4.1.4	 Application Structure	..	19	
4.1.5	 Design Patterns	...	19	

4.2	 Implementation	...	21	
4.2.1	 Development Tools	...	21	
4.2.2	 Front End Implementation	..	22	
4.2.3	 Back End Implementation	..	23	
4.2.4	 Key Functionality Implementation	...	23	
4.2.5	 Data Storage (JSON) and database	...	24	
4.2.6	 Package Tree	..	25	
4.2.7	 Project Management	...	25	

5	 Testing	..	27	

4	
	

6	 Conclusion & Future Work	...	Error!	Bookmark	not	defined.	

References – need to format this and citations	...	34	

Appendix	..	35	
A.	 System Manual – basically how to contribute. Same as the example web database report
on moodle	...	Error!	Bookmark	not	defined.	
B.	 User Manual – same	...	35	
C.	 Deployment Manual – Can you add the node shit	..	35	
D.	 Code Citation	..	36	
E.	 Client Feedback	..	37	
F.	 Key Screenshots	..	38	
G.	 Bi-Weekly Reports	..	43	

5	
	

List of Tables and Figures

6	
	

1 Introduction

1.1 Background and Problem Statement

1.1.1 Client and project background

University College London is one of the world’s premier research
institutions. Faculty and PhD students undertake various research projects that
push the boundaries of medicine, life sciences, computer science, and the
humanities [1]. A large portion of UCL’s research is funded by the Research
Councils UK (RCUK). RCUK is a strategic partnership of the UK’s seven
Research Councils and UCL is one of its primary beneficiaries in receiving
funding awards [2]. These awards are broken down into one or many project
allocations for the duration of the award. Since UCL has over 270 million pounds
in RCUK funding, tracking the partitioning of an award among projects and its
students and faculty supervisors is imperative. Research Services must know
where each award is being used, and when applicable, make use of available extra
funding to allow for more projects to be funded. Many years ago, the RCUK
managed the information on all its research grants and allocations. However, as
the funding amount increased and grew too large for one organization to handle,
the responsibility of managing the research grant information was passed on to
the individual recipient institutions, such as UCL. Given the large magnitude and
importance of the work of UCL Research Services, it is both archaic and
inefficient to store all the information in hundreds of excel sheets.

The data management difficulties of having to sift through these sheets to
simply find or add records was the primary reason Mr. Burgess requested a better
solution from our team. Another impetus was being able to promote more
research opportunities for various departments; under the previous data
management system, Mr. Burgess and his department would have to take in all
requests for whether there was available funding. He desired a transparent system
where individual UCL departments could view all the awards and allocations,
thus giving them all the information on whether proposed projects could be
funded. This would eliminate the possibility of planning a project but
consequently finding out from Mr. Burgess that there were insufficient funds. He
also envisioned more interdisciplinary projects flourishing as multiple
departments could view the allocation of research grant funding, and propose
joint cross-department projects and open new avenues for discovery.

7	
	

1.1.2 Outline of project
The Research Grant and Fund Management System is a web based

information management system. Its primary objective was aimed at improving
the work flow and efficiency for the client, Mr. Burgess, and his colleagues
(defined as primary users) in managing the large amount of data pertaining to
UCL’s research grants and project information. An integral part of this is the
front-end web user interface; the primary users can search for records pertaining
to awards, allocations, students, or collaborators. Since each entry of one category
is related to other categories, the web application provides a detailed view of each
entry that also has quick-links to related queries. Consequently, a primary user
viewing a detailed allocation is only one click away from querying for all the
students associated with that project allocation. These improvements to the
primary user workflow are all supplemental to the main increase in efficiency:
having all the excel sheets stored into a database that is maintained by a NodeJS
server. Eliminating the cumbersome process of looking at individual excel sheets
streamlines the look-up time greatly for the client.

The capabilities listed above are also available for users from outside the
client’s research department. These secondary users would be faculty and
students looking to propose potential projects. Providing them a transparent view
of the available funding and current awards satisfies the client’s long term vision
of fully utilizing all available funds by promoting research opportunities.
Adding, removing, and updating entries in the database are capabilities restricted
from secondary users but available to primary users. For the project’s purposes,
a toggle button was used to switch between these two privileges. The user
interface for secondary users simply hides the fields for adding, removing, and
updating. Moving forwards, integrating with UCL users and granting permissions
based on UCL identification would simply replace the current project’s toggle
button; users could be added to a primary user list and granted access to these
features.

1.2 Approach to Project

Both team members worked tirelessly and efficiently to produce a
functioning proof of concept in a condensed timeframe to overcome a 2-week
initial delay in pairing with the client and receiving the initial project briefing.
The first weeks of development consisted of client meetings to gather
requirements as well as design a solution. After deciding on a database web
application, the team focused on research to determine the technologies needed.
During this phase, the team went through iterative database design as well as
rapid learning of new technologies. After migrating excel sheets into the database,
the back-end server was developed to manage the database while the front end

8	
	

was created based off client feedback on user interface sketches. Although the
front end and back end were developed by different developers, they were very
much engineered in tandem because of many use cases and requirements involved
multiple communications between the front and back end. This integrated
development resulted in a web based application satisfying the client’s
requirements.

1.3 The Development Team

1.3.1 Background of Team Members

The team consisted of two members: Allen Wang and Stylianos Rousoglou.
Both were third-year computer science students from the United States studying
at UCL for the spring 2017 term as affiliate students.

Stylianos, known to his peers as Stelios, has an avid passion for computer
science, having previously served as a course instructor and worked as a NodeJS
developer. His familiarity with NodeJS made him an excellent and efficient back
end developer for the project. He is originally from Athens, Greece and is an avid
fan of Coldplay and The Killers.

Allen started his university studies far from computer science. Two years
later, he is glad to have switched into a challenging and rewarding field. He
previously worked as a web developer and this experience helped him in his role
as a front-end developer for this project. He hails from Michigan, the motor-city
area and is a big football fan.

1.3.2 Individual Team Member Roles

Both team members contributed to all facets of the project. Despite Allen
being the front-end developer and Stelios being responsible for the back-end, they
both worked with each other to give feedback and contribute in all areas of the
project. The general responsibilities were outlined as follows:

Name Roles

Allen Wang UI Designer, Front End Developer, Client Liaison, Tester

Stylianos Rousoglou Back-End Developer, Researcher, Report Editor, Tester

Table 1.1 – Team Roles

9	
	

2 Requirements

2.1 Gathering Requirements

The first few weeks consisted of multiple meetings between the team and
client to review and revise requirements. The feasibility and constraints of such
requirements naturally formed as the scope of the project was finalized. With the
feedback of the client, the team could categorize the requirements based on
importance. User empathy played a vital role in the process, as the team was
brought into the client’s office and went through the workflow of the previous
system to fully understand the limitations in fulfilling the various and necessary
use-cases. The biggest necessity was a faster way of looking up information and
a cleaner data management system.

The client and team came up with four “external portfolio views” to
categorize the database information queries into: awards, allocations, students,
and collaborators. By following this principle, the client also had a template to
normalize the existing excel sheets, in which multiple awards could have different
data columns. By cleaning up the data as well as further understanding the areas
of improvement to the primary user workflow, the team aligned the requirements
as closely as possible with the client’s vision.

2.2 Persona

As previously mentioned, the application has two different types of users.
The first, known as the primary user, consists of the client and his colleagues in
UCL Research Services. They needed to be able to perform all possible
operations on the migrated research grant data. These include conducting search
queries, adding new entries, updating fields in existing entries, and removing
entries.

The secondary user consists of faculty and students from departments
within UCL seeking to view the funding distribution. They could be looking for
available funding to use towards a new proposed project.

2.3 MoSCoW Requirements

The following requirements were the result of client feedback and approval.
The first contributor listed was responsible for the 50% or more of the
requirement implementation.

ID Description Priority State Contributors

1 The new system is to manage the information from
the current system’s hundreds of spreadsheets.

Must Complete Stelios,
Allen

10	
	

After migration into a database, the system must
also support adding, updating, and removing
entries.

2 Users can conduct different searches using
different parameters to obtain a result-set for
award, allocation, student, and collaborator
information.

Must Complete Allen,
Stelios

3 Client department users can update a notes section
for each award, allocation, student, and
collaborator row, providing a form of version
control and logging/consistency.

Must Complete Allen,
Stelios

4 Completed grants should be still recorded and
searchable, per UCL guidelines in retaining
records

Should Complete Stelios,
Allen

5 Users have different privileges, managed by the
client’s department. Primary users have read/write
access, secondary users only allowed to read.

Should Complete Allen,
Stelios

6 For improved workflow, detailed results for data
entries should have hyperlinks to related queries of
different search categories (award -> allocation ->
student -> collaborator).

Could Complete Allen,
Stelios

6 The system supports integration with portico/UCL
since UCL owns the information - data integrity

Won’t N/A N/A

7 The system currently supports all of the RCUK
grants, and eventually collaborators from external
parties will be added to the system.

Won’t N/A N/A

Table 2.1 – MoSCoW Requirements

2.4 Use Cases
The following lists the use cases developed by the team and client, with primary
or secondary-specific cases noted.

ID Description User

Note

1 Add research grant data Primary

2 Update existing data Primary

3 Remove data Primary

4 Search for awards, allocations, students, and collaborators Both

11	
	

5 View a detailed entry from a list of query results Both

6 Click to a related query search from a detailed entry view Both
Table 2.2 – Use Cases

3 Research

Most the first few weeks of the project focused on research. Both Stelios and
Allen looked at various frameworks, technologies, and strategies to implement
the application. Similar projects were examined to find similarities and useful
guidance. The entire stack of development was also critically examined as the
team considered multiple options and weighed the costs and benefits of each
individual component in the stack and how it fit into the entire application’s
development.

3.1 Related Projects

The team considered two of the most highly rated software systems online
that seemed to address the client’s needs. A cost-benefit analysis was conducted
and several features from each solution were considered and used as inspiration
for the eventual application.

Name Description Benefits Drawbacks Evaluation

Traverse by
Kaseya

“Traverse
proactively
identifies data
center and
networking issues
before they impact
service levels,
while providing
you the flexibility
to customize the
system for your
particular business
needs.”

Free Trial

Unmatched
horizontal scaling

Cloud computing

Data visualization

Integrated database
optimization for
bottlenecks

Costs money
after the free
trial

Abundant
features surplus
to core client
requirements

Although this
software is extremely
powerful and contains
most of the
functionality needed,
it does not make sense
to spend resources for
a subscription when
the core
functionalities needed
are basic enough to
implement.

12	
	

Teamdesk Custom database
creation and
management
software for all
users of all
technical
backgrounds.

Flexible custom
database creation

Secure cloud servers

99.96% uptime

Unlimited storage
space

No mention of
visualization

No demo or
free trial period

A lower level solution
compared to Kaseya,
this software is closer
to the client’s goal but
having to pay for a
proof of concept is not
ideal

Table 3.1 – Related Projects Analysis

3.2 Front-End
The team initially considered using popular frameworks like React or Angular
for the client-side interface.

3.2.1 React

For React, the team was intrigued at learning this new technology and
gaining experience with its component-based interface design. As well as being
able to perform on the front end, React could also operate on the back end[3].
However, what ultimately prevented the team from using React was its role as
only being a view layer, and its relatively steep learning curve [4]. The team’s
front end developer had limited JavaScript experience, and with a shortened
timeline due to the delayed client-team matching, the team did not think the
extensive time needed for ramping up on React would be worth its improved UI
experience. As the client and team concluded, the most important thing was
functionality in creating a data management system, with a clean user interface
sufficing.

3.2.2 Angular

As for Angular, it would have provided benefits like those of React. It is a
highly modular framework and would promote rich client-side interaction, as well
as being more than just a view layer like React [5]. Angular is better equipped for
serving as a Model-View Controller (MVC) which was crucial for the application
since communication between the client and server was frequent [6]. However,
the need to support frequent client-server interaction ultimately led to rejecting
Angular simply because of the difficulty of understanding Angular code for
unfamiliar developers.

13	
	

3.2.3 Front-End Choice
Since the front-end and back-end development was very integrated, it would have
proved a challenge for the back-end developer to understand the Angular front-
end. It was then decided to use vanilla JavaScript with jQuery when necessary.

3.3 Back-End

Whereas the team approached front-end technologies with less familiarity,
Stelios’ previous experience with NodeJS made the back-end choice a lot clearer.
Nevertheless, the team met with UCL’s IT department to factor in the long-term
implementation and scalability into the current choice of technology. The limited
debate was between NodeJS and Java as the server-side platform.

3.3.1 Java

Using Java presented a set of benefits that were initially unexpected. The
module for which this project was built towards had already presented Java to the
team members, so familiarity was a plus. Upon meeting with UCL IT services,
the team was informed that Java as a server-side technology would integrate
seamlessly into using UCL services and authentication later. However, this would
restrict the team to using UCL’s older technology stack and limit its database and
front end options. Therefore, Java was quickly ruled out as a contender.

3.3.2 NodeJS

Node’s widespread use and extensive array of open source libraries made
it the ideal choice. Along with Stelios’ previous experience as a Node developer,
Node also offered an easy mysql API library, Express for essential web
application features, and the added benefit of being a lightweight server with the
key feature of asynchronous communication. Allen also found it easier to pick up
on Node’s core features, such as promises and callbacks, making collaboration
and feedback in the back-end environment smooth and efficient.

3.3.3 Back-End Choice

Unlike the deliberation of front-end technologies, where each had both
advantages and slight disadvantages, on the back-end it was clear that NodeJS
would give the team the most flexibility. Adding to the fact that the client desired
a working proof of concept in which long term compatibility with UCL was not
the most immediate concern, using Java could not compare to the efficient and
lightweight asynchronous I/O of a NodeJS server. Node’s mysql package also
made it ideal since MySQL was the clear-cut choice as the database for the
application.

14	
	

4 Design and Implementation

4.1 Design
The user interface, system architecture, and overall application structure was
designed with continued emphasis on the requirements and use cases for the
primary and secondary users.

4.1.1 User Interface
The User Interface was sketched out with a simple template on Powerpoint. The
interactive feedback and iteration between client and team led to developing a
simple navigation bar that led to the four different query types.

Figure 4.1 – UI Wireframe

At the same time, the team designed extra enhancements to the User Interface
that were well accepted by the client. These include a dynamic detailed view of a
data entry, with certain fields containing hyperlinks to the related queries
pertaining to this certain data entry.

15	
	

Figure 4.2 – Detailed View

Figure 4.3 – Related Query Result from Detailed View

4.1.2 System Architecture
The system consisted of several components that enable the users to interact and
fulfill the use cases required. Below is a diagram of the main components of the
system and the actions that connect them to one another.

16	
	

Figure 4.4 – System Architecture Overview

Front End

The front end is where the user is presented with a simple navigation bar
linking to the four query types. Primary users will see a dropdown menu that
allows them to add records to the database, while secondary users will only be
able to search for records. This is where the users interact with the application;
the front end takes in the user’s actions then passes and receives information from
the back end, presenting the resulting information to the user. The mechanisms
behind communication with the back end and other functionality implementations
are abstracted and hidden from the user.

Figure 4.5 - Front End Search Form

17	
	

Back End

The back end consists of a server that communicates with both the front
end and the database. Requests are made to the server from the front end and
consequently from the user interacting with the application. These requests
trigger specific actions from the back end that can involve fetching information
from the database and serving it back to the front end to present to the user. Some
preprocessing is done in the back end on the information before responding back
to the front end. The logic and complexity of building the server is hidden from
the user; only the user interface interacts directly with the user and the front end
and back end respond accordingly.

Database

The database entity relationship diagram was mapped out to contain the
entries from the four different types of data sheets. Four tables were used for
awards, allocations, students, and collaborators. Each table contains rows and
columns, with the column values specifically describing the entry of the
corresponding row. The relationships between the tables were noted based on
primary and foreign keys that were present in records from different tables.
Noting these relationships maintained data integrity in the event of removing one
data entry and its related entries in other tables. The design of the database was
integral in improving the speed of looking up information on all aspects of a
research grant. The related queries available from the detailed view also made
involved querying the database. During the requirements gathering phase, the
team also went through the columns for each of the possible data values in each
table to define the data types necessary for the database. Below is the completed
entity relationship diagram.

18	
	

Figure 4.6 – Database Entity Relationship Diagram

4.1.3 Site Map
The different pages and views of the application are show in the site map below.
The application structure is like the site map except with four different query
types for each site view.

Figure 4.7 – Site Map

19	
	

4.1.4 Application Structure
The application is structured so that the

users have multiple quick and easy methods of
accessing certain records in the database. If the
specific fields of an entry are known, the user can
input the fields known and select the desired
record to display. Alternatively, using the
hyperlinks for related queries, a user can
navigate to any desired record in the system in
around five clicks even if the user does not
remember any of the search fields for the desired
record. Below is a simple diagram of a user’s
possible interactions with the application. The
dashed lines represent secondary user interaction
and the solid lines represent primary user
interaction.

4.1.5 Design Patterns

A design pattern is a widely accepted and
reusable type of solution to a problem that is
quite common. The team implemented several
design patterns during the development of the
application, namely the Model-View-Controller,
Command, Observer, Module, and Lazy
Initialization design patterns.

Model-View-Controller (MVC)

MVC, one of the most well-known
patterns, and the basis for many GUI
frameworks, was used to design the application.
Generally regarded as an architectural level
pattern, MVC splits the design process into three
areas: data, event handling, and visible
representation. The model component holds the
data and triggers the view component upon data
changes. The view component receives data and
represents it for the user, while also notifying the
controller when views change state. Finally, the controller handles events and
chooses the correct model or updates the view. The different components of the
application contribute to these different needs. In terms of user interaction, the

Figure 4.8 - Application Structural Flow 1

20	
	

user sees the view and interacts by sending inputs to the controller. A diagram of
the MVC model is shown below.

Figure 4.9 - Model View Controller Diagram

Command

The command design pattern encapsulates requests as if they are objects,
primarily to execute or wait on requests at different specific times. This
establishes a history of requests and resembles the control aspect of threading and
asynchronous I/O. The team utilized concepts of the command design pattern in
the back-end server implementation primarily with promises and resolve/reject
call backs.

Observer

The observer design pattern is characterized by different components in the
application having a one to many relationships. This dictates communication
between components, and a single change causes those dependent elements to
automatically update as well. The observer design pattern is integrated into MVC,
as the view component inherently observes and waits on the model component.
An example in the application is how clicking on a detailed view for a record
initiates and renders the update button, remove button, and related hyperlinks.
These components wait for the detailed result to be selected to select of use the
correct data.

Module

The module design pattern partitions related code into work packages that
serve more specific functions. This allows for modularity, faster development,
and efficient code organization and maintenance. In this application, modules
flourished in both the front and back end. The front end contained modules that

21	
	

handled searching/adding records and removing/updating records. They were
distinct because removal and update options observe only are presented when a
record is rendered in a detailed view. By separating these two, development could
proceed in parallel and once both were completed, the modules seamlessly
interacted. On the back end, the core server component handled requests from the
client by utilizing other specific modules. These include a module for database
operations and the HTTP request module.

Lazy Initialization

Lazy initialization solves the problem of slow bottlenecking by only
performing certain operations when they are needed. This “lazy” approach
ensures that whichever process needs the most resources at any given moment
should theoretically have access to the resources since other processes will not be
taking up the computer’s resources until they require it. One example is the update
form, which only is rendered when the update “onClick” event handler is
triggered. The form is then populated with the current values of the record. This
process takes up the computer and application’s resources only when it is
necessary.

4.2 Implementation

4.2.1 Development Tools

The team utilized several development tools that maximized efficiency to
aid in completing this project. An online integrated development environment
(IDE) was chosen primarily because constantly testing the application live was
important. Cloud9 offered a free web server hosting service and this streamlined
the development process tremendously. Instead of working on local branches, all
branch development was on the cloud. Since the application quickly reached the
phase where online deployment was crucial for testing, using Cloud9 proved to
be an ideal choice. When online access was limited, Allen would use Sublime to
work on the front end code while testing on his local machine.

The Cloud9 IDE was also integrated with GitHub. GitHub is a version
control tool that manages the main repository for a project. Contributors can
branch off while working on different features, then merge their changes back
pending an approved pull request. The team utilized Cloud9’s ability to
synchronize with their GitHub repository to ensure that their rapid testing of the
application still followed the standard procedures of version control and
collaboration through GitHub.

22	
	

A Slack team chat channel was also created. Slack is a communication tool where
team members update the rest of the team on progress or other important
development issues.

The development tools used in this project and their roles are shown in the
diagram below.

Figure 4.10 - Development Tools Diagram

4.2.2 Front End Implementation
Like most common web applications, the front end of this project was built with
HTML + CSS + JavaScript. Additional frameworks were also used for
responsiveness and dynamic views.

In constructing the layout of the web application, Bootstrap was integrated due to
its clean form styling and responsiveness for multiple platforms. Bootstrap is a
CSS web development framework that offers clean and easy styling of HTML
elements.

As previously discussed, the client side view was built using vanilla JavaScript,
rather than a popular framework like React or Angular. The dynamic web
application utilized several traditional elements of JavaScript like event handlers
and DOM manipulation. Using just JavaScript gave the developers more control
over the front end and increased their understanding of JavaScript without
simplifications offered by frameworks.

23	
	

4.2.3 Back End Implementation
The popular NodeJS runtime paired with Express web server to create a

fast and lightweight server. Using the node package manager, the team installed
the node mysql library to manage the SQL database. This framework provided
abstracted methods to manage the database and ensured the entire back-end
development utilized JavaScript. Express endpoints were the avenues for
communication with front end requests. The server would then process these
requests before accessing or modifying the database with the mysql package.
Since the front and back end both communicated with HTTP requests passing
JSON objects, the mysql extension was extremely useful as it also passed
information from the database in JSON format.

4.2.4 Key Functionality Implementation
The following sections detail the implementation of the core “must-have”
requirements for the project, from a full-stack perspective.

Add Data to Database (via Excel sheet migration or form input)
Initially, the client’s data was spread over hundreds of Microsoft Excel sheets.
Specifically, for any given award, at least two spreadsheets would be required to
hold all pertinent information. Therefore, prior to data migration, there was a need
for some data manipulation to condense information in an organized fashion.
Mark, our client, also helped in this process, by providing some sample data in a
single spreadsheet, formatted consistently (unlike data in spreadsheets that was
inconsistent and occasionally partial.) With the data at hand, the database tables
were constructed with SQL command-line queries and tailored to the data fields
Mark wished to retain. Data migration then was a matter of running a short
NodeJS script to import the csv data file into the database.

Search for Different Record Types

Under the client’s previous data management system, a loose file
organization system using folders and Excel sheets meant that a lot of familiarity
with the relative location of certain records was necessary to look up any record
with any reasonable speed. Even if a new user knew all the column values in a
record, without prior knowledge of the folder organization of the hundreds of
Excel sheets, searching for records would be extremely tedious.

The team’s solution inherently improved this functionality greatly by
storing records in a database with four tables. The front end presents users with a
navigation bar to the four different search forms where the user can search the
specific table, whether it be award, allocation, student, or collaborator. The client
side JavaScript then processed the user inputs for these four search forms and

24	
	

would make a fetch HTTP request to an Express endpoint on the back-end server.
The back-end then queried the database, then returned the response to the client
either with a result set or null set. The front-end then rendered the results in a
view for the user with the ability to click each record and view it in greater detail.
Thanks to the design patterns mentioned previously, this functionality performed
a lot more efficiently in the application compared to the previous system.

Update and Remove Records

The team could use modularity to develop the update and remove
functionalities in parallel with searching functionality. The team decided that a
user should be presented the options of updating or removing only after seeing
the detailed view of a record. Since the detailed view of a record was presented
upon clicking a search result, there would have been a bottleneck in development
waiting to finish implementing search before starting update and remove. Upon
rendering the detailed view of a record, the client generates two buttons with
JavaScript that both contain the current record’s columns. These values are used
as the parameters to either update or remove the correct record.

If update is chosen, the update form is rendered with the record’s previous
values all prefilled into the form. A cancel option is also present which takes the
user back to the detailed view. After the user makes changes to the form and
submits, the front end sends the two form inputs to the back end; the first input
contains the values of the record to change and the second contains the desired
new changes of the record. The back end then runs an update query on the
database using the first input as a parameter and the second as the update field.

For remove, a confirmation pop up is rendered before allowing the user to proceed.
Once confirmed, the parameters of the original record are sent to the back end
which executes a delete query.

Both functionalities return either a success or fail response to the front end.
Should the access rights be toggled from “all rights” (primary users) to “limited”
(secondary users) then the update and remove buttons are never rendered. This
prevents secondary users from modifying the data in the system, effectively
giving them read-only permission.

4.2.5 Data Storage (JSON) and database

JSON is the data structure we used to store data for the front end view
component. Each row in the search results contained a hidden field with the
record’s values stored as JSON. The JSON was iterated to generate the detailed
view for each record when clicked. The team chose to store the data instead of
having to make an additional query to the back end and database whenever a

25	
	

detailed view was clicked. This improved the responsiveness and speed of the
application at the relatively low cost of using JSON. Saving the JSON data for
each record also helped in speeding up the remove and update functionalities,
since the front end made requests to the back end using JSON. These
communications contained parameters and changes to the database in the form of
JSON, thus storing each row with the column values as JSON parameters served
multiple purposes that outweighed the cost of extra storage. In the back-end,
whether adding, updating, or deleting a record, iterating over a JSON object with
the necessary data fields was a very convenient way of generating the necessary
SQL queries for communication with the database.

4.2.6 Package Tree
The following diagram details the structure of the application’s development
repository. Directories left unexpanded are the node modules and the fonts folder.

Figure 4.11 - Package Tree Structure

4.2.7 Project Management

To combat the delayed start to the project, the team made sure to schedule
their deliverables in accordance with strict timelines to meet the deadline for their
client. A month before the project was due, they already had basic functionalities
working and performed a live demonstration for the module instructor and client.
After starting behind schedule, within two weeks the team’s progress had already
caught up and eventually surpassed the expected progress timeline. This was
achieved by a combination of hard work and efficient project management.

Gantt Chart

The following Gantt Chart shows the visualization of the project timeline.
The timeframe for completing tasks that led to the completion of the project are
presented using the bi-weekly reports for the module as a reference.

26	
	

Figure 4.12 - Gantt Chart Project Distribution

27	
	

5 Testing
5.1 Functional Testing

The process of testing our software solution was methodical and thorough.
To begin with, the core code development was done in a highly modular fashion.
This allowed for debugging specific functions and small parts of the code
individually with designated tests, and helped avoid unexpected bugs later on.
Early in the development process, the team devised an extensive list of corner and
edge cases that would be used to test the robustness of any piece of code written.
This list includes, but is not limited to, empty fields, numerical strings, strings
containing symbols, and non-ASCII characters. We ensured that the program
handles all the aforementioned cases gracefully, both during module testing and
end-to-end tests. During the latter stages of the development process, we regularly
tested our product as a whole, making use of all available functionality, and
ensuring that the continuous development and addition to the code base did not
introduce any unexpected software bugs or other issues

5.2 Compatibility Testing

Development of the product was primarily done using our preferred browser,
Google Chrome. However, we learned why compatibility testing is crucial the
hard way, when we tested our working solution on Safari and it was totally
unresponsive. Nevertheless, it turns out that JavaScript compatibility with Safari
is not an uncommon problem. As research revealed, fetch, a function extensively
used in our front end code to make post requests to our server, is not native to the
Safari browser, so the application was unable to communicate with our database.
Fortunately, the issue was resolved by adding a Javascript polyfill1 to our code
base that restored the functionality of fetch.

The full results of our compatibility testing process can be found below.

Device & Browser Comments Results
Desktop (Chrome) Mac, Linux, Windows All testing successful
Desktop (Firefox) Mac, Windows All testing successful
Desktop (Safari) Mac All testing successful
iPhone 7 (Safari) All testing successful
iPhone 7 (Chrome) All testing successful
iPhone 6 (Chrome) All testing successful
iPhone 6 (Safari) All testing successful
iPhone 6 (Opera) All testing successful
Android (Chrome) All testing successful

1 https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills

28	
	

5.3 Responsive Design Testing
Although the product was designed as a web application to be used primarily on
Mark’s wide computer screen, it was important to ensure that the web application
would be functional and responsive irrespective of the environment used to access
it. Therefore, we repeated the testing process on a variety of different screens,
including Macbook Air and Macbook Pro machines, desktop devices running the
Windows OS, and popular smartphones such as iPhones 6 and 7 and Android 6.
We ensured that the application is intuitive and easy to use on all devices, and
adjusted our user interface slightly to accommodate the “fat-finger” problem
potentially arising on mobile devices.
 The full results of our responsive design testing process can be found below:

Device Results
Macbook Pro 15-inch (2880 x 1800) All testing successful
Macbook Air 11-inch (1440 x 900) All testing successful
iPhone 7 (1920 x 1080) All testing successful
iPhone 6 (1334 x 750) All testing successful

5.4 User Acceptance Testing
In order to decide on the strong aspects of our product’s user interface and on
potential future improvements, we employed the help of friends and classmates.
Due to the sensitive and confidential nature of the data at hand, we used dummy
data throughout this phase of testing to protect the information Mark has entrusted
us with.

Positive Feedback • Intuitive	user	interface	

• Minimalist	design	
• Thorough	search	options	
• Fast	and	responsive	interface	

Areas for improvements • More	 environment-specific	 responses	 (e.g.	
automatic	resizing	for	phone	screens)	(out	of	
the	scope	of	this	project)	

• Explanation	of	data	fields	(redundant,	given	
that	potential	users	are	already	familiar	with	
the	nature	of	the	data)	

• More	aesthetically	pleasing	data	display	

29	
	

6 Conclusion
6.1 Summary of Achievements
Requested Features

ID Description Priority State Contributors

1 The new system is to manage the information from
the current system’s hundreds of spreadsheets.
After migration into a database, the system must
store the data reliably and securely.

Must Complete Stelios,
Allen

2 Adding, editing, and removing entries from tables
should be intuitive and simple

Must Complete Stelios,
Allen

3 Users can conduct different searches using
different parameters to obtain a result-set for
award, allocation, student, and collaborator
information.

Must Complete Allen,
Stelios

4 Client department users can update a notes section
for each award, allocation, student, and
collaborator row, providing a form of version
control and logging/consistency.

Must Complete Allen,
Stelios

5 Completed grants should be still recorded and
searchable, per UCL guidelines in retaining
records

Should Complete Stelios,
Allen

6 Users have different privileges, managed by the
client’s department. Primary users have read/write
access, secondary users only allowed to read.

Should Complete Allen,
Stelios

7

For improved workflow, detailed results for data
entries should have hyperlinks to related queries
of different search categories (award -> allocation
-> student -> collaborator).

Could Complete Allen,
Stelios

8 The system supports integration with portico/UCL
since UCL owns the information - data integrity

Could Out of
scope

N/A

9 The system currently supports all of the RCUK
grants, and eventually collaborators from external
parties will be added to the system.

Won’t Out of
scope

N/A

30	
	

Workload Distribution

ID Work Package Category Contributors

1 Meeting Client to Gather Abstract
Requirements

Client Interaction All

2 Analyze and form MoSCoW requirements Requirements
Analysis

All

3 Formulate use cases and iterate and review
with client

Client Interaction
/Requirements
Analysis

All

4 Research Possible Technologies and different
Implementations

Research All

5 Front End research Research Allen

6 Back End/Database research Research Stelios

7 User Interface Design UI Design Allen

8 Search Forms Rendering and Processing Front End Allen

9 Client side JS for dynamic rendering of results
and communicating with server

Front End Allen

10 Results quick-search hyperlinks within
detailed view

Front End Allen

11 Database Design Back End Stelios

12 Database Creation and Management Back End Stelios

13 Excel Data Migration Back End Stelios

14 Server receiving and handling queries to the
Database and serving back to client

Back End Stelios

15 Bi-Weekly Report #1 Reports All

16 Bi-Weekly Report #2 Reports All

17 Bi-Weekly Report #3 Reports All

18 Bi-Weekly Report #4 Reports All

19 Bi-Weekly Report #5 Reports All

20 Technical Report Abstract Reports Allen

21 Ch. 1 Technical Report Introduction Reports Allen

31	
	

22 Ch. 2 Technical Report Requirements Reports Allen

24 Ch. 3 Technical Report Research Reports Allen

25 Ch. 4 Technical Report Design and
Implementation

Reports All

26 Ch. 5 Technical Report Testing Reports Stelios

27 Ch. 6 Technical Report Conclusion and
Future

Reports Stelios

28 Compatibility and User Testing Reports Stelios

29 Technical Report Appendix Reports Allen

30 Technical Report References Reports Allen

31 Poster Poster Design Stelios

32 Video Video Editing All

Individual Contribution Table

Work Package Allen Stelios

Client Liaison 60% 40%

Requirement Analysis 50% 50%

Research 40% 60%

UI Design 75% 25%

Front End 80% 20%

Back End 10% 90%

Testing 25% 75%

Technical Report 66% 34%

Bi-Weekly Report 50% 50%

Poster Design 0% 100%

32	
	

Video Editing 50% 50%

Overall Contribution 55% 45%

Roles UI Designer, Front End
Developer, Client Liaison,
Tester, Report Editor

Back-End Developer,
Researcher, Report
Editor, Tester

6.2 Critical Evaluation

From our first meetings with Mark, we discussed extensively what the
purpose of the project should be. We agreed that building the perfect tool for him
would be far beyond the scope of this class assignment, as there are vast amounts
of empowering features that could be implemented but would require a full-time
commitment and professional work, access to UCL APIs, integration with Portico,
etc. Mark highlighted that UCL has been unable to provide him with professional
software for his work in the past, siting an inability to find such software that
caters to his exact needs. After further discussions, we concluded that the best
course of action would be the following: develop a web application prototype
tailored to Mark’s needs and wants, which he would use to demonstrate the
benefits of a tailor-made professional software solution compared to the current
system in place. This demonstration, he hoped, would expose his immediate need
for a new professional solution and urge UCL to provide him with funds for one.

The final product is very satisfying overall. It’s a lightweight, clearly
written, NodeJS web application that uses the latest technology in front-end and
back-end web application design, such as asynchronous promises, for speed and
efficiency. The outcomes decided upon over the course of our meetings with
Mark have been met, and the software solution closely emulates Mark’s initial
vision in terms of its functionality. The code is clearly documented and robustly
tested, compatible with all major devices, browsers and operating systems, and
provides an intuitive, easy-to-use interface. First, we developed a streamlined
process for standardizing Mark’s unordered and unformatted data, and importing
the information into clearly defined and logically intuitive SQL tables. Apart
from organizational advantages, the database integrity guarantees offer more
reliability and security, and minimize the impact of possible human error on large
volumes of sensitive information. More importantly, tasks that Mark repeats daily,
which currently involve scrolling and searching through lists of Excel documents,
are now a matter of a single click. Searching, adding, editing, and deleting
information now involves querying the database via an intuitive and convenient
platform that interacts with the data transparently and only presents the user with
relevant results. Under our solution, Mark never has to interact with the entirety
of the data stored. On top of that, such a web application approach allows him to

33	
	

work remotely and not rely on his work computer, where the Excel spreadsheets
are stored.

6.3 Future Work

Had we had more time to dedicate to this project, we might have followed a
different course of action and set significantly different objectives for our end
result. Instead of a proof of concept, we could have attempted to implement a tool
that Mark could actually use in his work. However, such a tool would have to be
taken over and maintained by the UCL IT department, which would require
numerous meetings with UCL engineers, development of the product in
completely different programming lagnuages (for compatibility with UCL
engineers’ work), and other time consuming processes that we decided were
beyond the scope and timeframe of the class’s project.

34	
	

7 References
“Research Councils, UK” [Online]. Available: http://www.rcuk.ac.uk/.
[Accessed: February 2017]

“Research services, UCL” [Online]. Available:
https://www.ucl.ac.uk/finance/fba-teams/research-services
[Accessed: February 2017]

“React Tutorials” [Online]. Available:
https://facebook.github.io/react/docs/hello-world.html. [Accessed: February
2017]

“Advantages and disadvantages of React” [Online]. Available:
http://www.pro-tekconsulting.com/blog/advantages-disadvantages-of-react-js/.
[Accessed: April 2017]

“Angular JS” [Online]. Available: https://github.com/angular. [Accessed:
February-April 2017]

“Advantages and disadvantages of AngularJS” [Online]. Available:
http://www.software-developer-india.com/advantages-and-disadvantages-of-
angularjs/. [Accessed: April 2017]

35	
	

Appendix

A. User Manual

The user interface of the application is designed to be intuitive and easy to use.
Depending on what data the user wants to access or modify, they can click
Awards, Allocations, Students, or Collaborators. To add information to the
database, one should click ‘Add’ on the corresponding drop-down menu, then
proceed to filling in the provided form and hitting ‘Add’. To search for data
entries, one should hit ‘Search’ on the appropriate drop-down menu, fill in the
information they wish to query with, and hit search. After the results appear, the
user selects the entry of interest, which becomes the main view of the page, and
is presented with two additional buttons: ‘Update’ and ‘Delete’. Hitting ‘Update’
will present the user with a form that allows them to modify any data they wish,
subsequently clicking ‘Update’ to commit and store the changes, or ‘Cancel’ to
discard them. Hitting ‘Delete’ removes the chosen entry from the database.

B. Deployment Manual

In its current state, our application can only be ran from the environment it
was developed in, namely the Cloud9 IDE (www.c9.io). The cloud9 environment
is not only an extremely convenient platform, but also provides a built-in database
server, which makes development and server-database integration easier. Since
our system currently uses the database server running on our shared IDE’s
localhost, the application can only be ran from within a local terminal that has
access to localhost, and only after the database server has been started.

As with every node application, NodeJS needs to be installed and updated in
order for the app to be launched.2 In addition to that, all library dependencies must
also be installed. the Node Package Manager, or npm, takes care of that; after
successfully installing node, executing ‘npm install’ in the application’s home
directory (i.e. where package.json is located) will automatically install the latest
versions of all dependencies listed in the package file.

On the Cloud9 IDE, the application can then be ran simply by executing the
bash script ‘test’ (included in the code submission), which simply starts the
database server, and then runs the application’s entry-point, namely app.js. This
process can also be followed manually, by executing ‘mysql-ctl restart’, ‘cd
~workspace/funds/server’, and ‘node app.js’, in that order. If running the
application off the cloud, modifying lines 19-26 of app.js is necessary to establish
a connection with the database server used, but the first step described here is no
longer necessary.

2 https://nodejs.org/en/download/

36	
	

C. System Manual
Standard NodeJS application development practices have been followed

throughout the production of our solution. The entry-point of our application is
named ‘app.js’, following the popular convention, and the package.json file
contains all necessary compatibility information and dependencies to run the
software.

The code is structured as follows: the server/ directory contains the back-end
entry-point, as well as two files with helper code functionality, namely helpers.js
and sql.js. Whereas app.js loads all relevant libraries, connects to the database
server, and defines all the active server endpoints, sql.js contains all functionality
that renders and executes SQL queries. Finally, helpers.js contains some helper
methods for string manipulation, numerical calculations etc.

The client/ directory contains the main html view file, index.html, as well as
three subdirectories, css, fonts, and js, where stylistic elements and front-end
scripts reside. Specifically, js/scripts.js contains our front-end JavaScript code,
whereas bootstrap.min.js, jquery.min.js, and fetch.js contain third-party code that
supplements our functionality.

Lines 19-26 of app.js establish a connection to the SQL database. In
developing and demoing the product, we used Cloud9’s built-in database server,
with localhost as the host and 3306 as the port (which is specific to Cloud9). If
using a different database server (which will likely be the case), the parameters
of the connection have to modified to match those of the server used.

D. Code Citation

No. Function Name File
Name

Source

1 findPos scripts.js http://stackoverflow.com/questions/11880443/how-
to-scroll-browser-to-desired-element-by-javascript

2 Number.prototype.format scripts.js http://stackoverflow.com/questions/149055/how-
can-i-format-numbers-as-money-in-javascript

3 N/A fetch.js https://github.com/github/fetch/blob/master/fetch.js

37	
	

E. Client Feedback

38	
	

F. Key Screenshots

Primary User Home Page

Search Form

39	
	

Search Query Results

Detailed View

40	
	

Updating a Record

Removing a Record

41	
	

Adding a Record

Secondary User Home Page without Add

42	
	

Secondary User Detailed View without Update/Remove

43	
	

G. Bi-Weekly Reports

44	
	

45	
	

46	
	

47	
	

48	
	

49	
	

50	
	

51	
	

52	
	

53	
	

54	
	

55	
	

