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Abstract

Modelling sports can be especially challenging given the
large variety and high complexity of factors that human
professional athletes take into account simultaneously
when making decisions during gameplay. In this paper,
we first develop a parametrized simulation of the game of
Tennis, wusing all modern rules of the game.
Subsequently, we employ Reinforcement Learning to
train sophisticated agents and evaluate their success in
learning obvious as well as empirical rules about how to
optimize their play, given their different capabilities.
Using a null action-selection model as a baseline, we
compare the performance of agents trained with Q-
Learning to see how they perform against equally skilled
players, as well as how they might adapt to exploit their
personal strengths and mitigate their weaknesses.

I. INTRODUCTION

Tennis is a sport that is as proactive as it is reactive.
Positioning oneself correctly in the court after hitting the
ball is essential in gaining an advantage in subsequent
ball hits. Of course, the choice of a player’s positioning
depends on how the opponent returns the ball; however,
in modern tennis, the ball travels at speeds of 100 mph,
so waiting until the opponent has hit the ball to position
oneself is a recipe for defeat. Instead, players depend on
their best estimate of where the ball is likely to be
returned, and make quick positioning choices based on
their experience, skill, and likelihood of outcome. We
have increasingly seen sports analytics utilized in training
athletes for individual sports (e.g. track & field) as well
as teams for sports like basketball and baseball; one
might postulate that tennis players also stand to gain from
a quantitative analysis of their game.

Although in theory we can observe specific patterns of
play employed by specific players, in practice there are
also external variables to be accounted for in such
patterns, such as the skills and gameplay style of the
opponent. Professional players developing their own
“style of play” refers to the adoption (or rejection) of
specific strategies that have proven to work well for
them, as well as the adaptation to specific opponents’
gameplays at times of competition. Therefore, we can
model a player’s decisions on the court at a high-level as
a function of their skillset, their trained intuition, and
their receptiveness to the style of play of respective
opponents.

To make these theoretical claims concrete, we first need
to develop a Tennis game simulation, and then pitch

different players against each other under varying
conditions. After making simplifying assumptions, we
develop a semi-stochastic simulation of a game between
two players, parametrized for various abilities of the two
players (in this paper accuracy, speed, and serve.) To
model the process of player training and experience, we
need a learning algorithm that is flexible enough to learn
both intuitive and non-obvious action decisions without
requiring too accurate of a state-space definition (because
that, after all, would be near impossible in a highly-
complex sport.) We will then run simulations with
players utilizing different policies, to verify that
repetition and reinforcement can actually lead to more
nuanced policies being learned and employed to gain a
competitive advantage. We will also look closely at some
sample actions of such learned policies and try to
decompose them in order to understand the extent to
which the developed models have learned to perform
optimal state-action decisions.

Il. RELATED WORK

There have been several attempts to use Machine
Learning Methods and data, historical, demographic, and
otherwise, to predict the outcome of tennis matches.
However, they largely depend on maximum likelihood
probability distributions drawn from players’ past game
data and aim to predict individual match outcomes for the
purposes of sports betting; therefore, none of the data
used in such work was relevant to my approach, which
models and examines matches on a microscopic level
(individual point.)

In “Probability of Winning at Tennis” [2], Keller and
Newton model individual points as independently
identically distributed random variables and use match-
level data to simulate tennis tournaments. In “Optimal
Strategy in Tennis: A Simple Probabilistic Model” [3],
George uses data analysis to describe an optimal service
strategy. More recently, Ferrante, Fonseca, and
Pontarollo [4] develop the law of “random duration of a
game” in a more general setting than the Markovian
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model previously assumed.

Q-Learning is a model-free Reinforcement Learning
algorithm. Reinforcement Learning is widely used in
contexts where agents need to develop a state-action
policy to maximize some long-term reward
accumulation. Being model-free, Q-Learning does not
require a precisely defined state transition model; more
conveniently, it utilizes state, action, and reward samples
drawn directly from repeated gameplay in order to learn
the policy that accumulates maximal reward; the state-
action policy is learned by applying incremental
estimation to the Bellman equation:

RG.0) = Qs @) + alr +y maxQ(s', @) - Q(s,0)

where E a, t are the state, action, and reward observed in
a single example, H € [0,1] is the learning rate, and
|17 € [0,1] is a discount factor.

I11. APPROACH

A. Rules of the Game

Tennis is a 2-player sport in which each player occupies
one side of the court (symmetry around vertical axis in
the middle, which is “the Net” — see Figure 1). The
smallest fundamental unit of play is a “point”, which is
defined as a continuous exchange of the ball between the
two players, where the players must hit the ball after it
has bounced at most once. Each player must aim to hit
the ball within the opponent’s court side. If player k’s hit
misses the opponent’s court (ball hitting the net or out of
bounds), or if a player k allows the opponent’s ball to
bounce more than once (the first time being within their
own court), player k loses the point. Each player’s side of
the court is thought of as being split in 4 quadrants,
which we will refer to by their topological abbreviations
in Figure I (Bottom Right (BR), Top Left (TL), etc.)

The first player to win 4 points is awarded one “game”.!
The first player to win 6 games by a margin of at least 2,
is awarded the “set”. In case of a 6-6 game tie, a “tie-
break” is played for the set to be awarded to the player
who wins at least 7 points with a margin of at least 2
points. The first player to win 2 “sets”, wins the match.
Note that in alternating games, the players alternate
“serve” (first hit of each “point”); players have 2 chances
to serve within bounds (on each point) before they lose
the point.

B. Tennis Match Simulation

In order to develop a reasonably simple tennis match
simulation, simplifying assumptions about the conditions
and outcomes of play had be made. There was also a
need to encode expertise into the model; since real-life
tennis gameplay data are not available, this was done in
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Figure 2: Types of ball hits
terms of approximate probability distributions of
stochastic outcomes of different actions. There prior
distributions were estimated with top tennis players in
mind and would not represent the ability or stochasticity
of outcome of an average tennis player. For simplicity,
the different types of ball hits are classified into two
distinct categories: Top Spin (7S) and Slice (SL) (See
Figure 2)

The capabilities of the 2 players are parametrized by a
vector of the form |[a1, b:,a,b,,axs, bzl
la; are the parameters corresponding to Player 1, while b
correspond to Player 2.
o lay, by €{1,2,3,4,5,6,7,89,10} parametrize
the players’ placement (accuracy) skills
o lay, by €{1,2,3,4,5,6,7,89,10} parametrize
the players’ velocity
. |a3, bz € {1,2,3,4,5,6,7,8,9,10} parametrize
the players’ serving capability

The simplifying assumptions made in implementing the
game’s rules are the following:

e There are 4 discrete positions on each side of the
court: {BR, BL, TR, TL}.

e There are 2 types of ball hits: [{T'S, SL).

e There are 4 available actions, corresponding to
quarter quadrants: [[BR, BL, TR, TL} ; they
represent a player’s attempt to run from their
current position to the respective quadrant.

Using the parametrization described above, the game
simulation was implemented stochastically as follows:

o Prerurn(pos, spin, ret) represents the
baseline probability that a player will return a
ball successfully from quadrant ’a (current
position) when the incoming ball bounces in
quadrant % with spin m

o |P0UTCOM55(2?OS, ret) represents the baseline
probability that a player aims the ball
successfully at opponent’s la when hitting
from their current position in quadrant %

o |PACTION5(pOS, a) represents the baseline
probability that a player in quadrant m will
successfully move to quadrant @ in time to hit
the incoming ball. If pos = a, then the
outcomes is deterministic (100% success);



otherwise, the outcome is stochastic (e.g.
successfully running from BL to BR is more
likely than from BL to TR)

o |Psgrve(10r2) represents the  baseline
probability that a player successfully serves (1st

serve is ﬁ, 2nd serve is ﬁ)

The players’ parametrization is then factored in as
follows:

e The probability that player 1 returns a ball
successfully from quadrant }a (current
position) when the incoming ball bounces in
quadrant W with spin m is

IPRETURN(pOS, Spin, ret) x 1.015%

e The probability that player 1 in quadrant %
successfully moves to quadrantIE in time to hit
the incoming ball is

Pacrions(pos, a) x 1.04%
This implies a stochasticity of outcome; with
probability |1 — PACTIONS(pOS' a) X 1.04%
the player ends up in one of the other quadrants
(probabilities depend on current position %
and attempted acti0n|a.)

e The probabil’iﬁ' that player 1 serves successfully

on his th serve, M €{1,2] is

Psgrve(n) X 1.015%

The scaling factors for the baseline probabilities were
determined empirically. Each tennis match simulation
runs in ~ 0.01 seconds.

C. Null Agent

In order to evaluate the performance of more advanced
agents, a NULL agent state-action function has to be
developed and act as a performance baseline. Just like
other players, the NULL agent is parametrized by 3
values |{n1,n7, n.}. The state-action function then chooses
the action ja that corresponds to the quadrant in which the
incoming ball is expected to bounce. Note that this NULL
agent is not choosing actions randomly; an agent
choosing quadrants to move to at random would perform
worse than out NULL agent, because there is significant
correlation between a player’s proximity to the ball’s
quadrant and successfully returning.

However, oftentimes it’s not the case that a player wants
to be positioned in the quadrant in which the ball is
bouncing. This complicated decision process is, after all,
a factor that distinguishes average from top tennis
players. As a result, we expect these nuanced action
choices to be better represented by the state-action
function learned by our next agent, where Q-learning is
utilized.

D. Q-Learning Agent

The Q-Learning agent is trained with varying numbers of
iterations. In each iteration, a single point is played
between the parametrized players, and 2 state-action
functions are learned simultaneously, one corresponding
to each player. As a result, we expect players to not only
learn how to act optimally to exploit their strengths, but
to learn state-action functions that also exploit the
opponents’ weaknesses. Agents receive no rewards for
each call hit that results to continuing game play; the
player who wins the point receives a reward of ﬁé; the
player who loses the point receives a reward of |—3.

No ad-hoc exploration strategy is used for Q-learning in
the context of the described tennis simulation. Each point
starts with one of the players serving (uniformly at
random). After the serve, the movement of the ball and
the success of each player in returning it is described by
the stochastic model outlined in the previous sections in
conjunction with a random action selector; we postulate
that since the action space is very small, a large number
of iterations will be enough to explore it substantially.

Since all points are generally considered equally
important in tennis, there we use a discount factor of

b = 1 (no discounting).

E. Eligibility Traces

Since the rewards from the point simulations above are
sparse (assuming an average of 10 ball hits per point,
only 1/5 of all state-action pairs observed actually result
in an immediate reward), eligibility traces can be
employed to award a discounted fraction of the reward of
the ultimate state-action outcome to the state-action pairs
that preceded it. Since winning a point in tennis is a
matter of sequential decision making in which good
action choices can offer advantages (or disadvantages) in
subsequent ball hits, we expect that eligibility traces may
improve the performance of our Q-learning agent.

IV. EXPERIMENTS & RESULTS

A. Null agent vs. Q-learning agent

We begin by evaluating the performance of Player 1
against Player 2 (without loss of generality) assuming
equal skillsets, as a fraction of wins out of 1,000 matches
played in two scenarios labelled as follows:
e NULL: Player 1 and Player 2 choose actions
based on the Null model (in Blue)
e RL: Player 1 is a Q-learning agent (utilizing a
learned Q state-action function); Player 2 is a
Null model agent (in Orange)

We vary the number of iterations of the Q-learning
algorithm, expecting that more Reinforcement Learning
iterations will result in higher relative performance for
the Q-learning agent. The results are presented in Figure



3, in which the Q-learning agent is trained using 1,000,
10,000, and 100,000 iterations, respectively. The

parameters vector in all 3 graphs parametrizes both
players identically; specifically, [8, 8, 8, 8, 8, 8] is used.

As we expected, Null agents pitched against themselves
win ~ 50% of the matches (they are equally good) in all
three scenarios. However, the margin by which the Q-
learning agent dominates the Null agent increases as the
iterations in the Q-learning algorithm are increased.
Specifically, the percentage of wins for the Q-learning
agents seems to converge at ~ 65% with 1,000 iterations

(Figure 3a); at ~ 77% with 10,000 iterations (Figure 3b);
and at ~ 93% with 100,000 iterations (Figure 3c.)

Meanwhile, utilizing eligibility traces with a discount
factor of |y = 0.9 seems to improve results only under
specific conditions. The Q-learning agent does perform
significantly better when eligibility traces are used at
10,000 iterations (See Figure 4); it didn’t seem to do any
better than the players trained without eligibility traces at
1,000 and 100,000 iterations. This can be attributed to the
following:

e If the number of iterations is significantly low,
then Q-learning will not have encountered
enough examples to converge to the optimal
state-action policy, even if eligibility traces are
used to compute more Q(s, a) values.

e If the number of iterations is significantly high,
then despite the sparsity of rewards, Q-learning
will have encountered enough examples to
converge to the optimal state-action policy,
irrespective of the use of eligibility traces.

e If the number of iterations is high, but hasn’t led
to convergence of the optimal Q(s,a) policy, then
eligibility traces could help bring the policy
closer to convergence.

As a result, we see the Q-leaning agent in Figure 4
outperform its equally skilled counterpart in Figure 3b;
but the Q-leaning agents in Figure 3a and Figure 3c, and
the respective agents utilizing eligibility traces (not
shown), seem to converge to about the same fraction.

The Null vs. Q-learning agent results are summarized in
the Table 1.

Q Iterations Fraction of wins (P1 in 1,000 matches)
NULL | RL RL + eligibility traces

1,000 ~50% | 65% 62%

10,000 ~50% | 76% 83%

100,000 ~50% | 93% 93%

Table 1: Fraction of Player 1 wins (1,000 matches)
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B. Players with Different Skillsets

We now proceed to exploring how Q-learning agents
with different skillsets (parametrizations) than their
opponents learn to exploit their competitive advantages.
First, let’s explore how players with a lower placement
(accuracy) might learn to play differently than their
opponents.

Figure 5 shows how Player 1 with skill parameter la, = 6
performs against Player 2 with |p, = 8, all else equal. As
expected, when both agents follow the Null strategy,
Player 2 dominates Player 1 (Player 1 wins < 40% of the
time). When Player 1’s strategy is developed using
Reinforcement Learning with 10,000 iterations, however,
Player 1 still wins the majority of the matches played,
specifically with a win percentage of ~ 63%.

Taking this notion to the limit, Figure 6 shown a match-
up between Player 1 with [a, = 4 and Player 2 with
b, =9. As shown by the win fraction convergence,
100,000 iterations are enough to lead Player 1 with a Q-
learning state-action function to a narrow win margin of
~ 53%.

In order to inspect some of the differences in the state-
action decisions between players with the above
difference in skill, we pitch two Q-learning agents with a

parametrization of 4,9,8,8,8,8] against each other.
Table 2 shows the actions chosen by each player when

sthe ball is heading to quadrant% with spin Epi , and
player is currently positioned at quadrant E

ex pos, spin, cp P1 | P2
1 TL, SL, TR TL | TR

2 BL,SL,BL | BL TL
3 BR,SL,TL | TR  BL

Table 2: Actions chosen by RL (P1) vs. Null (P2) agents

In Example 1 above, Player 1 being less accurate at
hitting the ball, decides to run to the left side of the court
(TL) to maximize their chances of successfully hitting the
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Figure 5: Fraction of wins of less skilled P1

ball. Player 2, who has significantly higher skill, stays in
TR, because his weighted probability of being successful
is higher, and maintaining the TR position is
advantageous for the future of the point (he would be
exposing his entire right side of the court). In Example 2,
Player 1 expects the ball at BL and decides to stay there
to maximize the probability of successfully returning;
Player 2 plays more aggressively and decided to move up
(TL), his high skill making him more likely to succeed in
this aggressive play, and if successful he will have the
advantage of having a strong net position in the next ball
return. In Example 3, Player 1 decided to move to the
right side of the court (TR) where the baseline probability
of successful return is high; the more skilled player 2
decided to move to BL in order to maximize their success
in future points (staying on the net is risky).

ex pos, spin, cp P1 | P2
1 TL, TS, TR BL | TL

2 TR,SL,BL | TR  TL
3 BL,SL,TR | BL BR

Table 3: Actions chosen by RL (P1) vs. Null (P2) agents
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Finally, we can explore how players’ optimal decision
function is shaped when their velocity parameters vary.
Figure 7 shows how Player 1 with skill parameter ¢, = 8
performs against Player 2 with b, = 4, all else equal. As
expected, in the Null vs. Null match-up, Player 1
performs better (wins ~ 55% of the time) against Player
2, the former being faster than the latter. Equivalently, in
the Q-learning vs. Null match-up with 10,000 iterations,
Player 1 wins ~ 81% of matches. Table 3 shows the
actions chosen by each player when the ball is heading to
quadrant m with spin [spin, and player is currently
positioned at quadrant &

Player 1 is faster than Player 2, which is reflected in the
learned action choices of Player 1. Keeping in mind the
non-deterministic, let’s see how their choices differ:

e In example 1, Player 1 is fast enough to attempt
to run cross court to BL (action with lowest
baseline probability of success) in order to
control subsequent ball exchanges better
(returning a top-spin hit on the net is very likely
to lead to a lost point.). Player 2 doesn’t run fast
enough, so they opt for the best solution
available, namely holding the net at TL.

e In example 2, Player 1 is fast enough to attempt
to run to cross-court to TR and hit the volley
(hitting an incoming slice ball on the net is very
desirable.) Player 2 is not fast enough, so they
opt for the next best alternative, which is moving
to TL, which has a higher baseline probability of
success.

e In example 3, equivalent to example 2, Player 1
decides to run back and cross-court to BL and hit
the ball as well as possible. Player 2 not being
fast enough opts to run backward but stay on the
right side (BR)

V. CONCLUSION & LIMITATIONS

Deciding how to move in a tennis court in order to
optimize match performance is a complex task that
greatly depends on the skills and ability of the competing
players. After all, that’s why we observe a great variety
of game styles by professional tennis players, each of
which spends significant amounts of time personalizing
their gameplay and optimizing their actions given
individual strengths and weaknesses. In this paper, we
attempted to model this complicated process as a semi-
stochastic game. The general results of Q-learning agents
vs. Null agents show a significant improvement from the

Null state-action policy to the obtained Q-learning policy.
Even at 100,000 iterations of Reinforcement Learning,
training ran for ~10 seconds, which suggests more
computational resources could be employed to potentially
make such policies even better. In addition, the Q-
learning agents do seem to learn policies that are tailored
to their skillsets, which was the second goal of this
project.

There are several potential improvements that could
render the simulation more realistic and the results more
useful overall. A more expressive parametrization of
players’ capabilities should be the starting point of such
improvements; although reduced to 3 variables in this
project, there are dozens of areas of play that competitors
can actually be compared at. For more player specific
(and more realistic) policy computations, a more
expressive scheme could be devised to account for more
such areas of play.

Another significant improvement would be collecting
real-life professional tennis data to compute maximum
likelihood estimates as baselines for specific actions and
outcomes. For current lack of such a dataset, tennis
experience and expertise were used instead as a baseline
for accuracy and stochasticity of outcome. However,
quantifying baseline probabilities using observed data
over a long period of time would likely result in a much
more reliable simulation overall.

GITHUB LINK

The code used to run simulations and reinforcement
learning, as well as all parameters used in the described
models, are available at github.com/steliosrousoglou/238.
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