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Abstract 

 
Modelling sports can be especially challenging given the 

large variety and high complexity of factors that human 

professional athletes take into account simultaneously 

when making decisions during gameplay. In this paper, 

we first develop a parametrized simulation of the game of 

Tennis, using all modern rules of the game. 

Subsequently, we employ Reinforcement Learning to 

train sophisticated agents and evaluate their success in 

learning obvious as well as empirical rules about how to 

optimize their play, given their different capabilities. 

Using a null action-selection model as a baseline, we 

compare the performance of agents trained with Q-

Learning to see how they perform against equally skilled 

players, as well as how they might adapt to exploit their 

personal strengths and mitigate their weaknesses. 

I. INTRODUCTION  

Tennis is a sport that is as proactive as it is reactive. 

Positioning oneself correctly in the court after hitting the 

ball is essential in gaining an advantage in subsequent 

ball hits. Of course, the choice of a player’s positioning 

depends on how the opponent returns the ball; however, 

in modern tennis, the ball travels at speeds of 100 mph, 

so waiting until the opponent has hit the ball to position 

oneself is a recipe for defeat. Instead, players depend on 

their best estimate of where the ball is likely to be 

returned, and make quick positioning choices based on 

their experience, skill, and likelihood of outcome. We 

have increasingly seen sports analytics utilized in training 

athletes for individual sports (e.g. track & field) as well 

as teams for sports like basketball and baseball; one 

might postulate that tennis players also stand to gain from 

a quantitative analysis of their game. 

  

Although in theory we can observe specific patterns of 

play employed by specific players, in practice there are 

also external variables to be accounted for in such 

patterns, such as the skills and gameplay style of the 

opponent. Professional players developing their own 

“style of play” refers to the adoption (or rejection) of 

specific strategies that have proven to work well for 

them, as well as the adaptation to specific opponents’ 

gameplays at times of competition. Therefore, we can 

model a player’s decisions on the court at a high-level as 

a function of their skillset, their trained intuition, and 

their receptiveness to the style of play of respective 

opponents. 

 

To make these theoretical claims concrete, we first need 

to develop a Tennis game simulation, and then pitch 

different players against each other under varying 

conditions. After making simplifying assumptions, we 

develop a semi-stochastic simulation of a game between 

two players, parametrized for various abilities of the two 

players (in this paper accuracy, speed, and serve.) To 

model the process of player training and experience, we 

need a learning algorithm that is flexible enough to learn 

both intuitive and non-obvious action decisions without 

requiring too accurate of a state-space definition (because 

that, after all, would be near impossible in a highly-

complex sport.) We will then run simulations with 

players utilizing different policies, to verify that 

repetition and reinforcement can actually lead to more 

nuanced policies being learned and employed to gain a 

competitive advantage. We will also look closely at some 

sample actions of such learned policies and try to 

decompose them in order to understand the extent to 

which the developed models have learned to perform 

optimal state-action decisions. 

II. RELATED WORK 

 

There have been several attempts to use Machine 

Learning Methods and data, historical, demographic, and 

otherwise, to predict the outcome of tennis matches. 

However, they largely depend on maximum likelihood 

probability distributions drawn from players’ past game 

data and aim to predict individual match outcomes for the 

purposes of sports betting; therefore, none of the data 

used in such work was relevant to my approach, which 

models and examines matches on a microscopic level 

(individual point.) 

 

In “Probability of Winning at Tennis” [2], Keller and 

Newton model individual points as independently 

identically distributed random variables and use match-

level data to simulate tennis tournaments. In “Optimal 

Strategy in Tennis: A Simple Probabilistic Model” [3], 

George uses data analysis to describe an optimal service 

strategy. More recently, Ferrante, Fonseca, and 

Pontarollo [4] develop the law of “random duration of a 

game” in a more general setting than the Markovian 

Figure 1: Court quadrants for both players 



model previously assumed. 

 

Q-Learning is a model-free Reinforcement Learning 

algorithm. Reinforcement Learning is widely used in 

contexts where agents need to develop a state-action 

policy to maximize some long-term reward 

accumulation. Being model-free, Q-Learning does not 

require a precisely defined state transition model; more 

conveniently, it utilizes state, action, and reward samples 

drawn directly from repeated gameplay in order to learn 

the policy that accumulates maximal reward; the state-

action policy is learned by applying incremental 

estimation to the Bellman equation: 

 

 
where  are the state, action, and reward observed in 

a single example,  is the learning rate, and 

 is a discount factor. 

 

III. APPROACH 

A. Rules of the Game 

Tennis is a 2-player sport in which each player occupies 

one side of the court (symmetry around vertical axis in 

the middle, which is “the Net” – see Figure 1). The 

smallest fundamental unit of play is a “point”, which is 

defined as a continuous exchange of the ball between the 

two players, where the players must hit the ball after it 

has bounced at most once. Each player must aim to hit 

the ball within the opponent’s court side. If player k’s hit 

misses the opponent’s court (ball hitting the net or out of 

bounds), or if a player k allows the opponent’s ball to 

bounce more than once (the first time being within their 

own court), player k loses the point. Each player’s side of 

the court is thought of as being split in 4 quadrants, 

which we will refer to by their topological abbreviations 

in Figure 1 (Bottom Right (BR), Top Left (TL), etc.) 

 

The first player to win 4 points is awarded one “game”.1 

The first player to win 6 games by a margin of at least 2, 

is awarded the “set”.  In case of a 6-6 game tie, a “tie-

break” is played for the set to be awarded to the player 

who wins at least 7 points with a margin of at least 2 

points. The first player to win 2 “sets”, wins the match. 

Note that in alternating games, the players alternate 

“serve” (first hit of each “point”); players have 2 chances 

to serve within bounds (on each point) before they lose 

the point.  

 

B. Tennis Match Simulation 

In order to develop a reasonably simple tennis match 

simulation, simplifying assumptions about the conditions 

and outcomes of play had be made. There was also a 

need to encode expertise into the model; since real-life 

tennis gameplay data are not available, this was done in 

                                                           
1. No Ad scoring 

terms of approximate probability distributions of 

stochastic outcomes of different actions. There prior 

distributions were estimated with top tennis players in 

mind and would not represent the ability or stochasticity 

of outcome of an average tennis player. For simplicity, 

the different types of ball hits are classified into two 

distinct categories: Top Spin (TS) and Slice (SL) (See 

Figure 2)  

 

The capabilities of the 2 players are parametrized by a 

vector of the form .  

 are the parameters corresponding to Player 1, while  

correspond to Player 2. 

•  parametrize 

the players’ placement (accuracy) skills 

•  parametrize 

the players’ velocity 

•  parametrize 

the players’ serving capability 

 

The simplifying assumptions made in implementing the 

game’s rules are the following: 

• There are 4 discrete positions on each side of the 

court: . 

• There are 2 types of ball hits: . 

• There are 4 available actions, corresponding to 

quarter quadrants: ; they 

represent a player’s attempt to run from their 

current position to the respective quadrant.  

 

Using the parametrization described above, the game 

simulation was implemented stochastically as follows: 

•  represents the 

baseline probability that a player will return a 

ball successfully from quadrant  (current 

position) when the incoming ball bounces in 

quadrant  with spin . 

 

•  represents the baseline 

probability that a player aims the ball 

successfully at opponent’s   when hitting 

from their current position in quadrant  

 

•  represents the baseline 

probability that a player in quadrant  will 

successfully move to quadrant  in time to hit 

the incoming ball. If , then the 

outcomes is deterministic (100% success); 

Figure 2: Types of ball hits 



otherwise, the outcome is stochastic (e.g. 

successfully running from BL to BR is more 

likely than from BL to TR) 

 

•  represents the baseline 

probability that a player successfully serves (1st 

serve is , 2nd serve is ) 

 

The players’ parametrization is then factored in as 

follows: 

• The probability that player 1 returns a ball 

successfully from quadrant  (current 

position) when the incoming ball bounces in 

quadrant  with spin  is 

 
• The probability that player 1 in quadrant  

successfully moves to quadrant  in time to hit 

the incoming ball is 

 
This implies a stochasticity of outcome; with 

probability  

the player ends up in one of the other quadrants 

(probabilities depend on current position  

and attempted action .) 

 

• The probability that player 1 serves successfully 

on his th serve,  is 

 
 

The scaling factors for the baseline probabilities were 

determined empirically. Each tennis match simulation 

runs in ~ 0.01 seconds. 

 

C. Null Agent 

In order to evaluate the performance of more advanced 

agents, a NULL agent state-action function has to be 

developed and act as a performance baseline. Just like 

other players, the NULL agent is parametrized by 3 

values . The state-action function then chooses 

the action  that corresponds to the quadrant in which the 

incoming ball is expected to bounce. Note that this NULL 

agent is not choosing actions randomly; an agent 

choosing quadrants to move to at random would perform 

worse than out NULL agent, because there is significant 

correlation between a player’s proximity to the ball’s 

quadrant and successfully returning.  

 

However, oftentimes it’s not the case that a player wants 

to be positioned in the quadrant in which the ball is 

bouncing. This complicated decision process is, after all, 

a factor that distinguishes average from top tennis 

players. As a result, we expect these nuanced action 

choices to be better represented by the state-action 

function learned by our next agent, where Q-learning is 

utilized. 

 

D. Q-Learning Agent 

The Q-Learning agent is trained with varying numbers of 

iterations. In each iteration, a single point is played 

between the parametrized players, and 2 state-action 

functions are learned simultaneously, one corresponding 

to each player. As a result, we expect players to not only 

learn how to act optimally to exploit their strengths, but 

to learn state-action functions that also exploit the 

opponents’ weaknesses. Agents receive no rewards for 

each call hit that results to continuing game play; the 

player who wins the point receives a reward of ; the 

player who loses the point receives a reward of . 

 

No ad-hoc exploration strategy is used for Q-learning in 

the context of the described tennis simulation. Each point 

starts with one of the players serving (uniformly at 

random). After the serve, the movement of the ball and 

the success of each player in returning it is described by 

the stochastic model outlined in the previous sections in 

conjunction with a random action selector; we postulate 

that since the action space is very small, a large number 

of iterations will be enough to explore it substantially. 

 

Since all points are generally considered equally 

important in tennis, there we use a discount factor of 

 (no discounting). 

  

E. Eligibility Traces 

Since the rewards from the point simulations above are 

sparse (assuming an average of 10 ball hits per point, 

only 1/5 of all state-action pairs observed actually result 

in an immediate reward), eligibility traces can be 

employed to award a discounted fraction of the reward of 

the ultimate state-action outcome to the state-action pairs 

that preceded it. Since winning a point in tennis is a 

matter of sequential decision making in which good 

action choices can offer advantages (or disadvantages) in 

subsequent ball hits, we expect that eligibility traces may 

improve the performance of our Q-learning agent. 

 

IV. EXPERIMENTS & RESULTS 

A. Null agent vs. Q-learning agent 

We begin by evaluating the performance of Player 1 

against Player 2 (without loss of generality) assuming 

equal skillsets, as a fraction of wins out of 1,000 matches 

played in two scenarios labelled as follows: 

• NULL: Player 1 and Player 2 choose actions 

based on the Null model (in Blue) 

• RL: Player 1 is a Q-learning agent (utilizing a 

learned Q state-action function); Player 2 is a 

Null model agent (in Orange) 

 

We vary the number of iterations of the Q-learning 

algorithm, expecting that more Reinforcement Learning 

iterations will result in higher relative performance for 

the Q-learning agent. The results are presented in Figure 



3, in which the Q-learning agent is trained using 1,000, 

10,000, and 100,000 iterations, respectively. The 

parameters vector in all 3 graphs parametrizes both 

players identically; specifically,  is used. 

 

As we expected, Null agents pitched against themselves 

win ~ 50% of the matches (they are equally good) in all 

three scenarios. However, the margin by which the Q-

learning agent dominates the Null agent increases as the 

iterations in the Q-learning algorithm are increased. 

Specifically, the percentage of wins for the Q-learning 

agents seems to converge at ~ 65% with 1,000 iterations 

(Figure 3a); at ~ 77% with 10,000 iterations (Figure 3b); 

and at ~ 93% with 100,000 iterations (Figure 3c.) 

 

Meanwhile, utilizing eligibility traces with a discount 

factor of  seems to improve results only under 

specific conditions. The Q-learning agent does perform 

significantly better when eligibility traces are used at 

10,000 iterations (See Figure 4); it didn’t seem to do any 

better than the players trained without eligibility traces at 

1,000 and 100,000 iterations. This can be attributed to the 

following: 

• If the number of iterations is significantly low, 

then Q-learning will not have encountered 

enough examples to converge to the optimal 

state-action policy, even if eligibility traces are 

used to compute more Q(s, a) values.  

• If the number of iterations is significantly high, 

then despite the sparsity of rewards, Q-learning 

will have encountered enough examples to 

converge to the optimal state-action policy, 

irrespective of the use of eligibility traces. 

• If the number of iterations is high, but hasn’t led 

to convergence of the optimal Q(s,a) policy, then 

eligibility traces could help bring the policy 

closer to convergence. 

 

As a result, we see the Q-leaning agent in Figure 4 

outperform its equally skilled counterpart in Figure 3b; 

but the Q-leaning agents in Figure 3a and Figure 3c, and 

the respective agents utilizing eligibility traces (not 

shown), seem to converge to about the same fraction. 

 

The Null vs. Q-learning agent results are summarized in 

the Table 1. 

 

Table 1: Fraction of Player 1 wins (1,000 matches) 

 

Q Iterations 
Fraction of wins (P1 in 1,000 matches) 

NULL RL RL + eligibility traces 

1,000 ~ 50% 65% 62% 

10,000 ~ 50% 76% 83% 

100,000 ~ 50% 93% 93% 

Figure 3: RL vs. Null agent for increasing Q iterations 

Figure 4: RL vs. Null agent, with eligibility traces 



B. Players with Different Skillsets 

We now proceed to exploring how Q-learning agents 

with different skillsets (parametrizations) than their 

opponents learn to exploit their competitive advantages. 

First, let’s explore how players with a lower placement 

(accuracy) might learn to play differently than their 

opponents. 

 

Figure 5 shows how Player 1 with skill parameter  

performs against Player 2 with , all else equal. As 

expected, when both agents follow the Null strategy, 

Player 2 dominates Player 1 (Player 1 wins < 40% of the 

time). When Player 1’s strategy is developed using 

Reinforcement Learning with 10,000 iterations, however, 

Player 1 still wins the majority of the matches played, 

specifically with a win percentage of ~ 63%. 

 

Taking this notion to the limit, Figure 6 shown a match-

up between Player 1 with  and Player 2 with 

. As shown by the win fraction convergence, 

100,000 iterations are enough to lead Player 1 with a Q-

learning state-action function to a narrow win margin of 

~ 53%. 

 

In order to inspect some of the differences in the state-

action decisions between players with the above 

difference in skill, we pitch two Q-learning agents with a 

parametrization of  against each other. 

Table 2 shows the actions chosen by each player when 

sthe ball is heading to quadrant  with spin , and 

player is currently positioned at quadrant .  

 
 

 

 

 

 

 

Table 2: Actions chosen by RL (P1) vs. Null (P2) agents 

 

In Example 1 above, Player 1 being less accurate at 

hitting the ball, decides to run to the left side of the court 

(TL) to maximize their chances of successfully hitting the 

ball. Player 2, who has significantly higher skill, stays in 

TR, because his weighted probability of being successful 

is higher, and maintaining the TR position is 

advantageous for the future of the point (he would be 

exposing his entire right side of the court). In Example 2, 

Player 1 expects the ball at BL and decides to stay there 

to maximize the probability of successfully returning; 

Player 2 plays more aggressively and decided to move up 

(TL), his high skill making him more likely to succeed in 

this aggressive play, and if successful he will have the 

advantage of having a strong net position in the next ball 

return. In Example 3, Player 1 decided to move to the 

right side of the court (TR) where the baseline probability 

of successful return is high; the more skilled player 2 

decided to move to BL in order to maximize their success 

in future points (staying on the net is risky). 
 

 

 

 

 

 

 

 

Table 3: Actions chosen by RL (P1) vs. Null (P2) agents 

 

ex pos, spin, cp P1 P2 

1 TL, SL, TR TL TR 

2 BL, SL, BL BL TL 

3 BR, SL, TL TR BL 

ex pos, spin, cp P1 P2 

1 TL, TS, TR BL TL 

2 TR, SL, BL TR TL 

3 BL, SL, TR BL BR 

Figure 5: Fraction of wins of less skilled P1 

Figure 6: Fraction of wins of less skilled P1 

Figure 7: Fraction of wins of quicker P1 



Finally, we can explore how players’ optimal decision 

function is shaped when their velocity parameters vary. 

Figure 7 shows how Player 1 with skill parameter  

performs against Player 2 with , all else equal. As 

expected, in the Null vs. Null match-up, Player 1 

performs better (wins ~ 55% of the time) against Player 

2, the former being faster than the latter. Equivalently, in 

the Q-learning vs. Null match-up with 10,000 iterations, 

Player 1 wins ~ 81% of matches. Table 3 shows the 

actions chosen by each player when the ball is heading to 

quadrant  with spin , and player is currently 

positioned at quadrant . 

 

Player 1 is faster than Player 2, which is reflected in the 

learned action choices of Player 1. Keeping in mind the 

non-deterministic, let’s see how their choices differ: 

 

• In example 1, Player 1 is fast enough to attempt 

to run cross court to BL (action with lowest 

baseline probability of success) in order to 

control subsequent ball exchanges better 

(returning a top-spin hit on the net is very likely 

to lead to a lost point.). Player 2 doesn’t run fast 

enough, so they opt for the best solution 

available, namely holding the net at TL. 

• In example 2, Player 1 is fast enough to attempt 

to run to cross-court to TR and hit the volley 

(hitting an incoming slice ball on the net is very 

desirable.) Player 2 is not fast enough, so they 

opt for the next best alternative, which is moving 

to TL, which has a higher baseline probability of 

success. 

• In example 3, equivalent to example 2, Player 1 

decides to run back and cross-court to BL and hit 

the ball as well as possible. Player 2 not being 

fast enough opts to run backward but stay on the 

right side (BR)  

 

V. CONCLUSION & LIMITATIONS 

Deciding how to move in a tennis court in order to 

optimize match performance is a complex task that 

greatly depends on the skills and ability of the competing 

players. After all, that’s why we observe a great variety 

of game styles by professional tennis players, each of 

which spends significant amounts of time personalizing 

their gameplay and optimizing their actions given 

individual strengths and weaknesses. In this paper, we 

attempted to model this complicated process as a semi-

stochastic game. The general results of Q-learning agents 

vs. Null agents show a significant improvement from the 

Null state-action policy to the obtained Q-learning policy. 

Even at 100,000 iterations of Reinforcement Learning, 

training ran for ~10 seconds, which suggests more 

computational resources could be employed to potentially 

make such policies even better. In addition, the Q-

learning agents do seem to learn policies that are tailored 

to their skillsets, which was the second goal of this 

project.  

 

There are several potential improvements that could 

render the simulation more realistic and the results more 

useful overall. A more expressive parametrization of 

players’ capabilities should be the starting point of such 

improvements; although reduced to 3 variables in this 

project, there are dozens of areas of play that competitors 

can actually be compared at. For more player specific 

(and more realistic) policy computations, a more 

expressive scheme could be devised to account for more 

such areas of play. 

 

Another significant improvement would be collecting 

real-life professional tennis data to compute maximum 

likelihood estimates as baselines for specific actions and 

outcomes. For current lack of such a dataset, tennis 

experience and expertise were used instead as a baseline 

for accuracy and stochasticity of outcome. However, 

quantifying baseline probabilities using observed data 

over a long period of time would likely result in a much 

more reliable simulation overall. 

GITHUB LINK 

The code used to run simulations and reinforcement 

learning, as well as all parameters used in the described 

models, are available at github.com/steliosrousoglou/238.  
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