

Modelling Optimal Tennis Decisions with Reinforcement Learning

 Stylianos Rousoglou

Computer Science MSCS

Stanford Unviersity

steliosr@stanford.edu

Abstract

Modelling sports can be especially challenging given the

large variety and high complexity of factors that human

professional athletes take into account simultaneously

when making decisions during gameplay. In this paper,

we first develop a parametrized simulation of the game of

Tennis, using all modern rules of the game.

Subsequently, we employ Reinforcement Learning to

train sophisticated agents and evaluate their success in

learning obvious as well as empirical rules about how to

optimize their play, given their different capabilities.

Using a null action-selection model as a baseline, we

compare the performance of agents trained with Q-

Learning to see how they perform against equally skilled

players, as well as how they might adapt to exploit their

personal strengths and mitigate their weaknesses.

I. INTRODUCTION

Tennis is a sport that is as proactive as it is reactive.

Positioning oneself correctly in the court after hitting the

ball is essential in gaining an advantage in subsequent

ball hits. Of course, the choice of a player’s positioning

depends on how the opponent returns the ball; however,

in modern tennis, the ball travels at speeds of 100 mph,

so waiting until the opponent has hit the ball to position

oneself is a recipe for defeat. Instead, players depend on

their best estimate of where the ball is likely to be

returned, and make quick positioning choices based on

their experience, skill, and likelihood of outcome. We

have increasingly seen sports analytics utilized in training

athletes for individual sports (e.g. track & field) as well

as teams for sports like basketball and baseball; one

might postulate that tennis players also stand to gain from

a quantitative analysis of their game.

Although in theory we can observe specific patterns of

play employed by specific players, in practice there are

also external variables to be accounted for in such

patterns, such as the skills and gameplay style of the

opponent. Professional players developing their own

“style of play” refers to the adoption (or rejection) of

specific strategies that have proven to work well for

them, as well as the adaptation to specific opponents’

gameplays at times of competition. Therefore, we can

model a player’s decisions on the court at a high-level as

a function of their skillset, their trained intuition, and

their receptiveness to the style of play of respective

opponents.

To make these theoretical claims concrete, we first need

to develop a Tennis game simulation, and then pitch

different players against each other under varying

conditions. After making simplifying assumptions, we

develop a semi-stochastic simulation of a game between

two players, parametrized for various abilities of the two

players (in this paper accuracy, speed, and serve.) To

model the process of player training and experience, we

need a learning algorithm that is flexible enough to learn

both intuitive and non-obvious action decisions without

requiring too accurate of a state-space definition (because

that, after all, would be near impossible in a highly-

complex sport.) We will then run simulations with

players utilizing different policies, to verify that

repetition and reinforcement can actually lead to more

nuanced policies being learned and employed to gain a

competitive advantage. We will also look closely at some

sample actions of such learned policies and try to

decompose them in order to understand the extent to

which the developed models have learned to perform

optimal state-action decisions.

II. RELATED WORK

There have been several attempts to use Machine

Learning Methods and data, historical, demographic, and

otherwise, to predict the outcome of tennis matches.

However, they largely depend on maximum likelihood

probability distributions drawn from players’ past game

data and aim to predict individual match outcomes for the

purposes of sports betting; therefore, none of the data

used in such work was relevant to my approach, which

models and examines matches on a microscopic level

(individual point.)

In “Probability of Winning at Tennis” [2], Keller and

Newton model individual points as independently

identically distributed random variables and use match-

level data to simulate tennis tournaments. In “Optimal

Strategy in Tennis: A Simple Probabilistic Model” [3],

George uses data analysis to describe an optimal service

strategy. More recently, Ferrante, Fonseca, and

Pontarollo [4] develop the law of “random duration of a

game” in a more general setting than the Markovian

Figure 1: Court quadrants for both players

model previously assumed.

Q-Learning is a model-free Reinforcement Learning

algorithm. Reinforcement Learning is widely used in

contexts where agents need to develop a state-action

policy to maximize some long-term reward

accumulation. Being model-free, Q-Learning does not

require a precisely defined state transition model; more

conveniently, it utilizes state, action, and reward samples

drawn directly from repeated gameplay in order to learn

the policy that accumulates maximal reward; the state-

action policy is learned by applying incremental

estimation to the Bellman equation:

where are the state, action, and reward observed in

a single example, is the learning rate, and

 is a discount factor.

III. APPROACH

A. Rules of the Game

Tennis is a 2-player sport in which each player occupies

one side of the court (symmetry around vertical axis in

the middle, which is “the Net” – see Figure 1). The

smallest fundamental unit of play is a “point”, which is

defined as a continuous exchange of the ball between the

two players, where the players must hit the ball after it

has bounced at most once. Each player must aim to hit

the ball within the opponent’s court side. If player k’s hit

misses the opponent’s court (ball hitting the net or out of

bounds), or if a player k allows the opponent’s ball to

bounce more than once (the first time being within their

own court), player k loses the point. Each player’s side of

the court is thought of as being split in 4 quadrants,

which we will refer to by their topological abbreviations

in Figure 1 (Bottom Right (BR), Top Left (TL), etc.)

The first player to win 4 points is awarded one “game”.1

The first player to win 6 games by a margin of at least 2,

is awarded the “set”. In case of a 6-6 game tie, a “tie-

break” is played for the set to be awarded to the player

who wins at least 7 points with a margin of at least 2

points. The first player to win 2 “sets”, wins the match.

Note that in alternating games, the players alternate

“serve” (first hit of each “point”); players have 2 chances

to serve within bounds (on each point) before they lose

the point.

B. Tennis Match Simulation

In order to develop a reasonably simple tennis match

simulation, simplifying assumptions about the conditions

and outcomes of play had be made. There was also a

need to encode expertise into the model; since real-life

tennis gameplay data are not available, this was done in

1. No Ad scoring

terms of approximate probability distributions of

stochastic outcomes of different actions. There prior

distributions were estimated with top tennis players in

mind and would not represent the ability or stochasticity

of outcome of an average tennis player. For simplicity,

the different types of ball hits are classified into two

distinct categories: Top Spin (TS) and Slice (SL) (See

Figure 2)

The capabilities of the 2 players are parametrized by a

vector of the form .

 are the parameters corresponding to Player 1, while

correspond to Player 2.

• parametrize

the players’ placement (accuracy) skills

• parametrize

the players’ velocity

• parametrize

the players’ serving capability

The simplifying assumptions made in implementing the

game’s rules are the following:

• There are 4 discrete positions on each side of the

court: .

• There are 2 types of ball hits: .

• There are 4 available actions, corresponding to

quarter quadrants: ; they

represent a player’s attempt to run from their

current position to the respective quadrant.

Using the parametrization described above, the game

simulation was implemented stochastically as follows:

• represents the

baseline probability that a player will return a

ball successfully from quadrant (current

position) when the incoming ball bounces in

quadrant with spin .

• represents the baseline

probability that a player aims the ball

successfully at opponent’s when hitting

from their current position in quadrant

• represents the baseline

probability that a player in quadrant will

successfully move to quadrant in time to hit

the incoming ball. If , then the

outcomes is deterministic (100% success);

Figure 2: Types of ball hits

otherwise, the outcome is stochastic (e.g.

successfully running from BL to BR is more

likely than from BL to TR)

• represents the baseline

probability that a player successfully serves (1st

serve is , 2nd serve is)

The players’ parametrization is then factored in as

follows:

• The probability that player 1 returns a ball

successfully from quadrant (current

position) when the incoming ball bounces in

quadrant with spin is

• The probability that player 1 in quadrant

successfully moves to quadrant in time to hit

the incoming ball is

This implies a stochasticity of outcome; with

probability

the player ends up in one of the other quadrants

(probabilities depend on current position

and attempted action .)

• The probability that player 1 serves successfully

on his th serve, is

The scaling factors for the baseline probabilities were

determined empirically. Each tennis match simulation

runs in ~ 0.01 seconds.

C. Null Agent

In order to evaluate the performance of more advanced

agents, a NULL agent state-action function has to be

developed and act as a performance baseline. Just like

other players, the NULL agent is parametrized by 3

values . The state-action function then chooses

the action that corresponds to the quadrant in which the

incoming ball is expected to bounce. Note that this NULL

agent is not choosing actions randomly; an agent

choosing quadrants to move to at random would perform

worse than out NULL agent, because there is significant

correlation between a player’s proximity to the ball’s

quadrant and successfully returning.

However, oftentimes it’s not the case that a player wants

to be positioned in the quadrant in which the ball is

bouncing. This complicated decision process is, after all,

a factor that distinguishes average from top tennis

players. As a result, we expect these nuanced action

choices to be better represented by the state-action

function learned by our next agent, where Q-learning is

utilized.

D. Q-Learning Agent

The Q-Learning agent is trained with varying numbers of

iterations. In each iteration, a single point is played

between the parametrized players, and 2 state-action

functions are learned simultaneously, one corresponding

to each player. As a result, we expect players to not only

learn how to act optimally to exploit their strengths, but

to learn state-action functions that also exploit the

opponents’ weaknesses. Agents receive no rewards for

each call hit that results to continuing game play; the

player who wins the point receives a reward of ; the

player who loses the point receives a reward of .

No ad-hoc exploration strategy is used for Q-learning in

the context of the described tennis simulation. Each point

starts with one of the players serving (uniformly at

random). After the serve, the movement of the ball and

the success of each player in returning it is described by

the stochastic model outlined in the previous sections in

conjunction with a random action selector; we postulate

that since the action space is very small, a large number

of iterations will be enough to explore it substantially.

Since all points are generally considered equally

important in tennis, there we use a discount factor of

 (no discounting).

E. Eligibility Traces

Since the rewards from the point simulations above are

sparse (assuming an average of 10 ball hits per point,

only 1/5 of all state-action pairs observed actually result

in an immediate reward), eligibility traces can be

employed to award a discounted fraction of the reward of

the ultimate state-action outcome to the state-action pairs

that preceded it. Since winning a point in tennis is a

matter of sequential decision making in which good

action choices can offer advantages (or disadvantages) in

subsequent ball hits, we expect that eligibility traces may

improve the performance of our Q-learning agent.

IV. EXPERIMENTS & RESULTS

A. Null agent vs. Q-learning agent

We begin by evaluating the performance of Player 1

against Player 2 (without loss of generality) assuming

equal skillsets, as a fraction of wins out of 1,000 matches

played in two scenarios labelled as follows:

• NULL: Player 1 and Player 2 choose actions

based on the Null model (in Blue)

• RL: Player 1 is a Q-learning agent (utilizing a

learned Q state-action function); Player 2 is a

Null model agent (in Orange)

We vary the number of iterations of the Q-learning

algorithm, expecting that more Reinforcement Learning

iterations will result in higher relative performance for

the Q-learning agent. The results are presented in Figure

3, in which the Q-learning agent is trained using 1,000,

10,000, and 100,000 iterations, respectively. The

parameters vector in all 3 graphs parametrizes both

players identically; specifically, is used.

As we expected, Null agents pitched against themselves

win ~ 50% of the matches (they are equally good) in all

three scenarios. However, the margin by which the Q-

learning agent dominates the Null agent increases as the

iterations in the Q-learning algorithm are increased.

Specifically, the percentage of wins for the Q-learning

agents seems to converge at ~ 65% with 1,000 iterations

(Figure 3a); at ~ 77% with 10,000 iterations (Figure 3b);

and at ~ 93% with 100,000 iterations (Figure 3c.)

Meanwhile, utilizing eligibility traces with a discount

factor of seems to improve results only under

specific conditions. The Q-learning agent does perform

significantly better when eligibility traces are used at

10,000 iterations (See Figure 4); it didn’t seem to do any

better than the players trained without eligibility traces at

1,000 and 100,000 iterations. This can be attributed to the

following:

• If the number of iterations is significantly low,

then Q-learning will not have encountered

enough examples to converge to the optimal

state-action policy, even if eligibility traces are

used to compute more Q(s, a) values.

• If the number of iterations is significantly high,

then despite the sparsity of rewards, Q-learning

will have encountered enough examples to

converge to the optimal state-action policy,

irrespective of the use of eligibility traces.

• If the number of iterations is high, but hasn’t led

to convergence of the optimal Q(s,a) policy, then

eligibility traces could help bring the policy

closer to convergence.

As a result, we see the Q-leaning agent in Figure 4

outperform its equally skilled counterpart in Figure 3b;

but the Q-leaning agents in Figure 3a and Figure 3c, and

the respective agents utilizing eligibility traces (not

shown), seem to converge to about the same fraction.

The Null vs. Q-learning agent results are summarized in

the Table 1.

Table 1: Fraction of Player 1 wins (1,000 matches)

Q Iterations
Fraction of wins (P1 in 1,000 matches)

NULL RL RL + eligibility traces

1,000 ~ 50% 65% 62%

10,000 ~ 50% 76% 83%

100,000 ~ 50% 93% 93%

Figure 3: RL vs. Null agent for increasing Q iterations

Figure 4: RL vs. Null agent, with eligibility traces

B. Players with Different Skillsets

We now proceed to exploring how Q-learning agents

with different skillsets (parametrizations) than their

opponents learn to exploit their competitive advantages.

First, let’s explore how players with a lower placement

(accuracy) might learn to play differently than their

opponents.

Figure 5 shows how Player 1 with skill parameter

performs against Player 2 with , all else equal. As

expected, when both agents follow the Null strategy,

Player 2 dominates Player 1 (Player 1 wins < 40% of the

time). When Player 1’s strategy is developed using

Reinforcement Learning with 10,000 iterations, however,

Player 1 still wins the majority of the matches played,

specifically with a win percentage of ~ 63%.

Taking this notion to the limit, Figure 6 shown a match-

up between Player 1 with and Player 2 with

. As shown by the win fraction convergence,

100,000 iterations are enough to lead Player 1 with a Q-

learning state-action function to a narrow win margin of

~ 53%.

In order to inspect some of the differences in the state-

action decisions between players with the above

difference in skill, we pitch two Q-learning agents with a

parametrization of against each other.

Table 2 shows the actions chosen by each player when

sthe ball is heading to quadrant with spin , and

player is currently positioned at quadrant .

Table 2: Actions chosen by RL (P1) vs. Null (P2) agents

In Example 1 above, Player 1 being less accurate at

hitting the ball, decides to run to the left side of the court

(TL) to maximize their chances of successfully hitting the

ball. Player 2, who has significantly higher skill, stays in

TR, because his weighted probability of being successful

is higher, and maintaining the TR position is

advantageous for the future of the point (he would be

exposing his entire right side of the court). In Example 2,

Player 1 expects the ball at BL and decides to stay there

to maximize the probability of successfully returning;

Player 2 plays more aggressively and decided to move up

(TL), his high skill making him more likely to succeed in

this aggressive play, and if successful he will have the

advantage of having a strong net position in the next ball

return. In Example 3, Player 1 decided to move to the

right side of the court (TR) where the baseline probability

of successful return is high; the more skilled player 2

decided to move to BL in order to maximize their success

in future points (staying on the net is risky).

Table 3: Actions chosen by RL (P1) vs. Null (P2) agents

ex pos, spin, cp P1 P2

1 TL, SL, TR TL TR

2 BL, SL, BL BL TL

3 BR, SL, TL TR BL

ex pos, spin, cp P1 P2

1 TL, TS, TR BL TL

2 TR, SL, BL TR TL

3 BL, SL, TR BL BR

Figure 5: Fraction of wins of less skilled P1

Figure 6: Fraction of wins of less skilled P1

Figure 7: Fraction of wins of quicker P1

Finally, we can explore how players’ optimal decision

function is shaped when their velocity parameters vary.

Figure 7 shows how Player 1 with skill parameter

performs against Player 2 with , all else equal. As

expected, in the Null vs. Null match-up, Player 1

performs better (wins ~ 55% of the time) against Player

2, the former being faster than the latter. Equivalently, in

the Q-learning vs. Null match-up with 10,000 iterations,

Player 1 wins ~ 81% of matches. Table 3 shows the

actions chosen by each player when the ball is heading to

quadrant with spin , and player is currently

positioned at quadrant .

Player 1 is faster than Player 2, which is reflected in the

learned action choices of Player 1. Keeping in mind the

non-deterministic, let’s see how their choices differ:

• In example 1, Player 1 is fast enough to attempt

to run cross court to BL (action with lowest

baseline probability of success) in order to

control subsequent ball exchanges better

(returning a top-spin hit on the net is very likely

to lead to a lost point.). Player 2 doesn’t run fast

enough, so they opt for the best solution

available, namely holding the net at TL.

• In example 2, Player 1 is fast enough to attempt

to run to cross-court to TR and hit the volley

(hitting an incoming slice ball on the net is very

desirable.) Player 2 is not fast enough, so they

opt for the next best alternative, which is moving

to TL, which has a higher baseline probability of

success.

• In example 3, equivalent to example 2, Player 1

decides to run back and cross-court to BL and hit

the ball as well as possible. Player 2 not being

fast enough opts to run backward but stay on the

right side (BR)

V. CONCLUSION & LIMITATIONS

Deciding how to move in a tennis court in order to

optimize match performance is a complex task that

greatly depends on the skills and ability of the competing

players. After all, that’s why we observe a great variety

of game styles by professional tennis players, each of

which spends significant amounts of time personalizing

their gameplay and optimizing their actions given

individual strengths and weaknesses. In this paper, we

attempted to model this complicated process as a semi-

stochastic game. The general results of Q-learning agents

vs. Null agents show a significant improvement from the

Null state-action policy to the obtained Q-learning policy.

Even at 100,000 iterations of Reinforcement Learning,

training ran for ~10 seconds, which suggests more

computational resources could be employed to potentially

make such policies even better. In addition, the Q-

learning agents do seem to learn policies that are tailored

to their skillsets, which was the second goal of this

project.

There are several potential improvements that could

render the simulation more realistic and the results more

useful overall. A more expressive parametrization of

players’ capabilities should be the starting point of such

improvements; although reduced to 3 variables in this

project, there are dozens of areas of play that competitors

can actually be compared at. For more player specific

(and more realistic) policy computations, a more

expressive scheme could be devised to account for more

such areas of play.

Another significant improvement would be collecting

real-life professional tennis data to compute maximum

likelihood estimates as baselines for specific actions and

outcomes. For current lack of such a dataset, tennis

experience and expertise were used instead as a baseline

for accuracy and stochasticity of outcome. However,

quantifying baseline probabilities using observed data

over a long period of time would likely result in a much

more reliable simulation overall.

GITHUB LINK

The code used to run simulations and reinforcement

learning, as well as all parameters used in the described

models, are available at github.com/steliosrousoglou/238.

REFERENCES

[1] Kochenderfer, M. (2015). Decision making under

uncertainty : theory and application. Chapter 5.
Cambridge, Massachusetts: The MIT Press.

[2] K. Newton, Paul & B. Keller, Joseph. (2005).
Probability of Winning at Tennis I. Theory and Data.
Studies in Applied Mathematics. 114. 241 - 269.
10.1111/j.0022-2526.2005.01547.x.

[3] George, Stephen. (1973). Optimal Strategy in Tennis: A
Simple Probabilistic Model. Appl.Statist.. 22. 97-104.
10.2307/2346309.

[4] Ferrante, Marco & Fonseca, Giovanni & Pontarollo,
Silvia. (2017). How long does a tennis game last?.
Proceedings of MathSport International 2017
Conference.

[5] Wang, H., Emmerich, M. & Plaat, A. “Monte Carlo Q-
learning for General Game Playing,” unpublished.

	I. Introduction
	II. Related work
	III. Approach
	A. Rules of the Game
	B. Tennis Match Simulation
	C. Null Agent
	D. Q-Learning Agent
	E. Eligibility Traces

	IV. Experiments & Results
	A. Null agent vs. Q-learning agent
	B. Players with Different Skillsets

	V. Conclusion & Limitations
	Github link
	References

